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1. Introduction

This review paper is devoted to the numerical analysis of abstract differential equations in Banach
spaces. Most of the finite difference, finite element, and projection methods can be considered from the
point of view of general approximation schemes (see for example [207,210,211] for such a representation).
Results obtained for general approximation schemes make the formulation of concrete numerical methods
easier and give an overview of methods which are suitable for different classes of problems.

The qualitative theory of differential equations in Banach spaces is presented in many brilliant papers
and books. We can refer to the bibliography [219], which contains about 3000 references. Unfortunately,
no books or reviews on general approximation theory appear for differential equations in abstract spaces
during last 20 years. Any information on the subject can be found in the original papers only. It seems
that such a review is the first step towards describing a complete picture of discretization methods for
abstract differential equations in Banach spaces.

In Sec. 2 we describe the general approximation scheme, different types of convergence of operators,
and the relation between the convergence and the approximation of spectra. Also, such a convergence
analysis can be used if one considers elliptic problems, i.e., the problems which do not depend on time.

Section 3 contains a complete picture of the theory of discretization of semigroups on Banach spaces.
It summarizes Trotter–Kato and Lax–Richtmyer theorems from the general and common point of view
and related problems.

The approximation of ill-posed problems is considered in Sec. 4, which is based on the theory of ap-
proximation of local C-semigroups. Since the backward Cauchy problem is very important in applications
and admits a stochastic noise, we also consider approximation using a stochastic regularization. Such an
approach was never considered in the literature before to the best of our knowledge.

In Sec. 5, we present discrete coercive inequalities for abstract parabolic equations in Cτn([0, T ];En),
Cα

τn([0, T ];En), L
p
τn([0, T ];En), and Bτn([0, T ];C

α(Ωh)) spaces.
The last section, Sec. 6 deals with semilinear problems. We consider approximations of Cauchy

problems and also the problems with periodic solutions. The approach described here is based on the
theory of rotation of vector fields and the principle of compact approximation of operators.

2. General Approximation Scheme

Let B(E) denote the Banach algebra of all linear bounded operators on a complex Banach space
E. The set of all linear closed densely defined operators on E will be denoted by C(E). We denote by
σ(B) the spectrum of the operator B, by ρ(B) the resolvent set of B, by N (B) the null space of B,
and by R(B) the range of B. Recall that B ∈ B(E) is called a Fredholm operator if R(B) is closed,
dimN (B) <∞ and codimR(B) <∞, the index of B is defined as indB = dimN (B)−codimR(B). The
general approximation scheme [83–85,187,207,210] can be described in the following way. Let En and E
be Banach spaces, and let {pn} be a sequence of linear bounded operators pn : E → En, pn ∈ B(E,En),
n ∈ N = {1, 2, · · · }, with the following property:

‖pnx‖En → ‖x‖E as n→∞ for any x ∈ E.
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Definition 2.1. A sequence of elements {xn}, xn ∈ En, n ∈ N, is said to be P-convergent to x ∈ E iff
‖xn − pnx‖En → 0 as n→∞; we write this as xn → x.

Definition 2.2. A sequence of elements {xn}, xn ∈ En, n ∈ N, is said to be P-compact if for any N′ ⊆ N
there exist N′′ ⊆ N′ and x ∈ E such that xn → x, as n→∞ in N′′.

Definition 2.3. A sequence of bounded linear operators Bn ∈ B(En), n ∈ N, is said to be PP-convergent
to the bounded linear operator B ∈ B(E) if for every x ∈ E and for every sequence {xn}, xn ∈ En, n ∈ N,
such that xn → x one has Bnxn → Bx. We write this as Bn → B.

For general examples of notions of P-convergence, see [82,187,203,211].

Remark 2.1. If we set En = E and pn = I for each n ∈ N, where I is the identity operator on E, then
Definition 2.1 leads to the traditional pointwise convergence of bounded linear operators which is denoted
by Bn → B.

Denote by E+ the positive cone in a Banach lattice E. An operator B is said to be positive if for any
x+ ∈ E+, it follows Bx+ ∈ E+; we write 0 � B.

Definition 2.4. A system {pn} is said to be discrete order preserving if for all sequences {xn}, xn ∈ En,
and any element x ∈ E, the following implication holds: xn → x implies x+n → x+.

It is known [99] that {pn} preserves the order iff ‖pnx
+ − (pnx)

+‖En → 0 as n→∞ for any x ∈ E.
In the case of unbounded operators, and, in general, we know infinitesimal generators are unbounded,

we consider the notion of compatibility.

Definition 2.5. A sequence of closed linear operators {An}, An ∈ C(En), n ∈ N, is said to be compatible
with a closed linear operator A ∈ C(E) iff for each x ∈ D(A) there is a sequence {xn}, xn ∈ D(An) ⊆
En, n ∈ N, such that xn → x and Anxn → Ax. We write this as (An, A) are compatible.

In practice, Banach spaces En are usually finite dimensional, although, in general, say, for the case
of a closed operator A, we have dimEn →∞ and ‖An‖B(En) →∞ as n→∞.

2.1. Approximation of spectrum of linear operators. The most important role in approximations
of equation Bx = y and approximations of spectra of an operator B is played by the notions of stable and
regular convergence. These notions are used in different areas of numerical analysis (see [10,15,81,86–89,
207,210,212,223]).

Definition 2.6. A sequence of operators {Bn}, Bn ∈ B(En), n ∈ N, is said to be stably convergent to an
operator B ∈ B(E) iff Bn → B and ‖B−1n ‖B(En) = O(1), n→∞. We will write this as: Bn → B stably.

Definition 2.7. A sequence of operators {Bn}, Bn ∈ B(En), is called regularly convergent to the operator
B ∈ B(E) iff Bn → B and the following implication holds:

‖xn‖En = O(1) & {Bnxn} is P-compact =⇒ {xn} is P-compact.

We write this as: Bn → B regularly.

Theorem 2.1 ([210]). For Bn ∈ B(En) and B ∈ B(E) the following conditions are equivalent:
(i) Bn → B regularly, Bn are Fredholm operators of index 0 and N (B) = {0};
(ii) Bn → B stably and R(B) = E;
(iii) Bn → B stably and regularly;
(iv) if one of conditions (i)–(iii) holds, then there exist B−1n ∈ B(En), B

−1 ∈ B(E), and B−1n → B−1

regularly and stably.

This theorem admits an extension to the case of closed operators B ∈ C(E), Bn ∈ C(En) [213].
Let Λ ⊆ C be some open connected set, and let B ∈ B(E). For an isolated point λ ∈ σ(B), the

corresponding maximal invariant space (or generalized eigenspace) will be denoted byW(λ;B) = P (λ)E,
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where P (λ) =
1

2πi

∫
|ζ−λ|=δ

(ζI − B)−1dζ and δ is small enough so that there are no points of σ(B) in

the disc {ζ : |ζ − λ| ≤ δ} different from λ. The isolated point λ ∈ σ(B) is a Riesz point of B if
λI − B is a Fredholm operator of index zero and P (λ) is of finite rank. Denote by W(λ, δ;Bn) =⋃
|λn−λ|<δ,λn∈σ(Bn)

W(λn, Bn), where λn ∈ σ(Bn) are taken from a δ-neighborhood of λ. It is clear that

W(λ, δ;Bn) = Pn(λ)En, where Pn(λ) =
1

2πi

∫
|ζ−λ|=δ

(ζIn − Bn)
−1dζ. The following theorems state the

complete picture of the approximation of the spectrum.

Theorem 2.2 ([82,208,209]). Assume that Ln(λ) = λI −Bn and L(λ) = λI −B are Fredholm operators
of index zero for any λ ∈ Λ and Ln(λ)→ L(λ) stably for any λ ∈ ρ(B) ∩ Λ �= ∅. Then

(i) for any λ0 ∈ σ(B) ∩ Λ, there exists a sequence {λn}, λn ∈ σ(Bn), n ∈ N, such that λn → λ0 as
n→∞;

(ii) if for some sequence {λn}, λn ∈ σ(Bn), n ∈ N, one has λn → λ0 ∈ Λ as n→∞, then λ0 ∈ σ(B);
(iii) for any x ∈ W(λ0, B), there exists a sequence {xn}, xn ∈ W(λ0, δ;Bn), n ∈ N, such that xn → x

as n→∞;
(iv) there exists n0 ∈ N such that dimW(λ0, δ;Bn) ≥ dimW(λ0, B) for any n ≥ n0.

Remark 2.2. The inequality in (iv) can be strict for all n ∈ N as is shown in [207].

Theorem 2.3 ([210]). Assume that Ln(λ) and L(λ) are Fredholm operators of index zero for all λ ∈ Λ.
Suppose that Ln(λ) → L(λ) regularly for any λ ∈ Λ and ρ(B) ∩ Λ �= ∅. Then statements (i)–(iii) of
Theorem 2.2 hold and also

(iv) there exists n0 ∈ N such that dimW(λ0, δ;Bn) = dimW(λ0, B) for all n ≥ n0;
(v) any sequence {xn}, xn ∈ W(λ0, δ;Bn), n ∈ N, with ‖xn‖En = 1 is P-compact and any limit point

of this sequence belongs to W(λ0, B).

Remark 2.3. Estimates of |λn − λ0|, gap
(
W(λ0, δ;Bn),W(λ0, B)

)
and |λ̂n − λ0| are given in [210],

where λ̂n denotes the arithmetic mean (counting algebraic multiplicities) of the spectral values of Bn that
contribute to W(λ0, δ;Bn). For the notion of gap and its properties, see [105].

2.2. Regions of convergence. Theorems 2.2 and 2.3 have been generalized to the case of closed oper-
ators in [213] by using the following notions introduced by Kato [105].

Definition 2.8. The region of stability ∆s = ∆s({An}), An ∈ C(Bn), is defined as the set of all λ ∈ C
such that λ ∈ ρ(An) for almost all n and such that the sequence {‖(λIn − An)

−1‖}n∈N is bounded.
The region of convergence ∆c = ∆c({An}), An ∈ C(En), is defined as the set of all λ ∈ C such that
λ ∈ ∆s({An}) and such that the sequence of operators {(λIn − An)

−1}n∈N is PP-convergent to some
operator S(λ) ∈ B(E).

It is clear that S(·) is a pseudoresolvent, and S(·) is a resolvent of some operator iff N (S(λ)) = {0}
for some λ (cf. [105]).

Definition 2.9. A sequence of operators {Kn}, Kn ∈ C(En), is called regularly compatible with an
operator K ∈ C(E) if (Kn,K) are compatible and, for any bounded sequence ‖xn‖En = O(1) such that
xn ∈ D(Kn) and {Knxn} is P-compact, it follows that {xn} is P-compact, and the P-convergence of {xn}
to some x and that of {Knxn} to some y as n→∞ in N′ ⊆ N imply that x ∈ D(K) and Kx = y.

Definition 2.10. The region of regularity ∆r = ∆r({An}, A), is defined as the set of all λ ∈ C such that
(Kn,K), where Kn = λIn −An and K = λI −A are regularly compatible.

The relationships between these regions are given by the following statement.
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Proposition 2.1 ([213]). Suppose that ∆c �= ∅ and N (S(λ)) = {0} at least for one point λ ∈ ∆c so that
S(λ) = (λI −A)−1. Then (An, A) are compatible and

∆c = ∆s ∩ ρ(A) = ∆s ∩∆r = ∆r ∩ ρ(A).

It is shown in [213] that the conditions (An, A) are compatible, λI − An and λI − A are Fredholm
operators with index zero for any λ ∈ Λ and ρ(A)∩Λ �= ∅ imply (i)–(iv) of Theorem 2.2 when ρ(A)∩Λ ⊆ ∆s

and imply (i)–(iii) of Theorem 2.2 and (iv)–(v) of Theorem 2.3, when Λ ⊆ ∆r.

Definition 2.11. A Riesz point λ0 ∈ σ(A) is said to be strongly stable in Kato’s sense if
dimW(λ0, δ;Bn) ≤ dimW(λ0, B) for all n ≥ n0.

Theorem 2.4 ([213]). The Riesz point λ0 ∈ σ(A) is strongly stable in Kato’s sense iff λ0 ∈ Λ∩∆r∩σ(A).

Investigations of approximation of spectra and types of convergence, but not those of general ap-
proximation scheme are given in [13,40,52,130,131, 142,145].

2.3. Convergence in Anselone’s conditions. Throughout this subsection we assume that En = E
and pn = I for all n ∈ N. Hence the symbol P will be omitted in the notation of this subsection.

Let us recall that if Bn → B compactly (see Definition 2.12), then for any λ �= 0 we have λI −Bn →
λI −B regularly [207]. When Bn → B compactly and B is a compact operator, Anselone [10] has proved
that

‖(Bn −B)Bn‖ → 0, ‖(Bn −B)B‖ → 0 as n→∞. (2.1)

Considering an approximation of a weakly singular compact integral operator, Ahues [4] has proved
that these convergence properties (2.1) are sufficient to state that a Riesz point is strongly stable in Kato’s
sense.

Theorem 2.5 ([7]). Assume that B ∈ B(E) is compact and that Bn → B. If ‖(Bn − B)Bn‖ → 0 as
n → ∞; then for any nonzero λ0 ∈ σ(B), assertions (i)–(iii) of Theorem 2.2 and assertions (iv)–(v) of
Theorem 2.3 hold.

Theorem 2.6 ([7]). Assume that Bn → B and (2.1) holds. Then for any nonzero Riesz point λ0 ∈ σ(B),
assertions (i)–(iii) of Theorem 2.2 and assertions (iv)–(v) of Theorem 2.3 hold.

Corollary 2.1 ([5]). Assume that Bn → B, λI − Bn are Fredholm operators of index zero for λ ∈ {z :
|z − λ0| ≤ δ}, and ‖(Bn − B)Bk

n‖ → 0 as n → ∞ for some k ∈ N. Then for any nonzero Riesz point
λ0 ∈ σ(B), assertions (i)–(iii) of Theorem 2.2 and assertions (iv)–(v) of Theorem 2.3 hold.

Theorem 2.7 ([7]). Assume that B is compact, Bn → B, and ‖Bn(Bn − B)‖ → 0. Then λ0In − Bn →
λ0I −B regularly for any λ0 �= 0.

Theorem 2.8 ([7]). Assume that B is compact, Bn → B, and ‖Bk
n(Bn−B)‖ → 0 for some k ∈ N. Then

λ0In −Bn → λ0I −B regularly for any λ0 �= 0.

Let r(B) be a spectral radius of operator B ∈ B(E).

Theorem 2.9 ([18]). Let E be a Banach lattice. Let 0 � Bn, B ∈ B(E) be such that Bn → B and
‖(Bn −B)+‖ → 0 as n→∞. Suppose that r(B) is a Riesz point of σ(B). Then r(Bn) is a Riesz point of
σ(Bn) and r(Bn)→ r(B) as n→∞.

The conclusion on the order of convergence of eigenvectors in Theorem 2.9 also is given in [17].
The application of Theorems 2.5–2.8 to the numerical solution of a mathematical model used in the

jet printer industry is considered in [6,118].
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2.4. Compact convergence of resolvents. We now consider the important class of operators which
have compact resolvents. We will use this property of generator as an assumption in Sec. 6. In this case,
it is natural to consider approximate operators which “preserve” this property.

Definition 2.12. A sequence of operators {Bn}, Bn ∈ B(En), n ∈ N, converges compactly to an operator
B ∈ B(E) if Bn → B and the following compactness condition holds:

‖xn‖En = O(1) =⇒ {Bnxn} is P-compact.

Definition 2.13. The region of compact convergence of resolvents, ∆cc = ∆cc(An, A), where An ∈ C(En)
and A ∈ C(E) is defined as the set of all λ ∈ ∆c ∩ ρ(A) such that (λIn −An)

−1 → (λI −A)−1 compactly.

Theorem 2.10. Assume that ∆cc �= ∅. Then for any ζ ∈ ∆s the following implication holds:

‖xn‖En = O(1) & ‖(ζIn −An)xn‖En = O(1) =⇒ {xn} is P-compact. (2.2)

Conversely, if for some ζ ∈ ∆c ∩ ρ(A) implication (2.2) holds, then ∆cc �= ∅.

Proof. Let (µIn − An)
−1 → (µI − A)−1 compactly for some µ ∈ ∆cc. Then for ‖xn‖En = O(1) and

‖(ζI −An)xn‖En = O(1), from the Hilbert identity

(ζIn −An)
−1 − (µIn −An)

−1 = (µ− ζ)(ζIn −An)
−1(µIn −An)

−1, (2.3)

we obtain xn = (µIn−An)
−1(ζIn−An)xn−(ζ−µ)(µIn−An)

−1xn, and it follows that {xn} is P-compact.
Conversely, let implication (2.2) hold for some ζ0 ∈ ∆c ∩ρ(A). We show that ζ0 ∈ ∆cc. Taking a bounded
sequence {yn}, n ∈ N, we obtain ‖(ζ0In − An)

−1yn‖En = O(1) for n ∈ N. Let us apply implication (2.2)
to the sequence xn = (ζ0In −An)

−1yn. It is easy to see that {xn} is P-compact. Hence ζ0 ∈ ∆cc.

Corollary 2.2. Assume that ∆cc �= ∅. Then ∆cc = ∆c ∩ ρ(A).

Proof. It is clear that ∆cc ⊆ ∆c ∩ ρ(A). To prove that ∆cc ⊇ ∆c ∩ ρ(A), let us consider the Hilbert
identity (2.3). Now let µ ∈ ∆cc. Then µ ∈ ∆cc ∩∆c ∩ ρ(A). Hence, for every ζ ∈ ∆c ∩ ρ(A) and for any
bounded sequence {xn}, n ∈ N, the sequence {(ζIn −An)

−1xn} is P-compact.

Comparing Definitions 2.7, 2.8, and 2.13 with implication (2.2), we see that ∆cc ⊆ ∆r.

Theorem 2.11. Assume that ∆cc �= ∅. Then ∆r = C.

Proof. Take any point λ1 ∈ C. We have to show that (λ1In − An, λ1I − A) are regularly compatible.
Assume that ‖xn‖En = O(1) and that {(λ1In−An)xn} is P-compact. To show that {xn} is P-compact, we
take µ ∈ ∆cc. Using (2.3) with ζ = λ1, we obtain xn = (µIn−An)

−1(λ1In−An)xn+(λ1−µ)(µIn−An)
−1xn

and, therefore, {xn} is P-compact. Assume now that xn → x and (λ1In − An)
−1xn → y, as n → ∞ in

N
′ ⊆ N. Then x = (µI−A)−1y−(λ1−µ)(µI−A)−1x, and it follows that x ∈ D(A) and (λ1I−A)x = y.

3. Discretization of Semigroups

Let us consider the following well-posed Cauchy problem in the Banach space E with an operator
A ∈ C(E)

u′(t) = Au(t), t ∈ [0,∞),

u(0) = u0,
(3.1)

where the operator A generates a C0-semigroup exp(·A). It is well-known that this C0-semigroup gives
the solution of (3.1) by the formula u(t) = exp(tA)u0 for t ≥ 0. The theory of well-posed problems and
numerical analysis of these problems have been developed extensively; see, e.g., [75,88,105,161, 163, 200,
216].
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Let us consider on the general discretization scheme for the semidiscrete approximation of the problem
(3.1) in the Banach spaces En:

u′n(t) = Anun(t), t ∈ [0,∞),

un(0) = u0n,
(3.2)

with the operators An ∈ C(En) such that they generate C0-semigroups which are compatible with the
operator A and u0n → u0.

3.1. The simplest discretization schemes. We have the following version of Trotter–Kato’s Theorem
on the general approximation scheme.

Theorem 3.1 ([203] (Theorem ABC)). The following conditions (A) and (B) are equivalent to condition
(C).

(A) Compatibility. There exists λ ∈ ρ(A) ∩ ∩n ρ(An) such that the resolvents converge:

(λIn −An)
−1 → (λI −A)−1;

(B) Stability. There are some constants M ≥ 1 and ω, independent of n and that ‖ exp(tAn)‖ ≤
M exp(ωt) for t ≥ 0 and any n ∈ N;

(C) Convergence. For any finite T > 0, one has maxt∈[0,T ] ‖ exp(tAn)u
0
n − pn exp(tA)u

0‖ → 0 as

n→∞ whenever u0n → u0.

The analytic C0-semigroup case is slightly different from the general case but has the same property
(A).

Theorem 3.2 ([161]). Let operators A and An generate analytic C0-semigroups. The following conditions
(A) and (B1) are equivalent to condition (C1).

(A) Compatibility. There exists λ ∈ ρ(A) ∩ ∩n ρ(An) such that the resolvents converge:

(λIn −An)
−1 → (λI −A)−1;

(B1) Stability. There are some constants M2 ≥ 1 and ω2 such that

‖(λI −An)
−1‖ ≤

M2
|λ− ω2|

, Reλ > ω2, n ∈ N;

(C1) Convergence. For any finite µ > 0 and some 0 < θ <
π

2
, we have

max
η∈Σ(θ,µ)

‖ exp(ηAn)u
0
n − pn exp(ηA)u

0‖ → 0

as n→∞ whenever u0n → u0. Here, Σ(θ, µ) = {z ∈ Σ(θ) : |z| ≤ µ} and Σ(θ) = {z ∈ C : | arg z| ≤ θ}.

Definition 3.1. A linear operator A : D(A) ⊆ E → E is said to have the positive off-diagonal (POD)
property if 〈Au, φ〉 ≥ 0 whenever 0 � u ∈ D(A) and 0 � φ ∈ E∗ with 〈u, φ〉 = 0.

Definition 3.2. An element e ∈ E+ is said to be an order-one in E if for every x ∈ E there exists
0 ≤ λ ∈ R such that −λe � x � λe. For e ∈ intE+ we can define the order-one norm by

‖x‖e = inf{λ ≥ 0 : −λe � x � λe}.

An ordered Banach space E is called an order-one space if there exists e ∈ intE+ such that ‖ · ‖E = ‖ · ‖e.

Now we can state a version of the Trotter–Kato theorem for positive semigroups.

Theorem 3.3 ([169]). Let the operators An and A from (3.1) and (3.2) be compatible, let E,En be
order-one spaces, and let en ∈ D(An)∩ intE+n . Assume that the operators An have the POD property and
Anen � 0 for sufficiently large n. Then exp(tAn)→ exp(tA) uniformly in t ∈ [0, T ].
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We can assume without loss of generality that conditions (A) and (B) hold for the corresponding
semigroup case if any discretization processes in time are considered. If we denote by Tn(·) a family

of discrete semigroups as in [105], i.e., Ăn =
1

τn
(Tn(τn) − In) ∈ B(En) and Tn(t) = Tn(τn)

kn , where

kn =

[
t

τn

]
, as τn → 0, n→∞, then one obtains the following assertion.

Theorem 3.4 ([203] (Theorem ABC-discr.)). The following conditions (A) and (B′) are equivalent to
condition (C′).

(A) Compatibility. There exists λ ∈ ρ(A) ∩ ∩n ρ(Ăn) such that the resolvents converge:

(λIn − Ăn)
−1 → (λI −A)−1;

(B′) Stability. There are some constants M1 ≥ 1 and ω1 such that

‖Tn(t)‖ ≤M1 exp(ω1t) for t ∈ R+ = [0,∞), n ∈ N;

(C′) Convergence. For any finite T > 0 one has maxt∈ [0,T ] ‖Tn(t)u
0
n−pn exp(tA)u

0‖ → 0 as n→∞,

whenever u0n → u0.

Theorem 3.5 ([203]). Assume that conditions (A) and (B) of Theorem 3.1 hold. Then the implicit
difference scheme

Un(t+ τn)− Un(t)

τn
= AnUn(t+ τ), Un(0) = u0n, (3.3)

is stable, i.e. ‖(In − τnAn)
−kn‖ ≤ M1e

ω1t, t = knτn ∈ R+, and gives an approximation of the solution
of problem (3.1), i.e., Un(t) ≡ (In − τnAn)

−knu0n → exp(tA)u0n P-converges uniformly with respect to
t = knτn ∈ [0, T ] as u0n → u0, n→∞, kn →∞, τn → 0.

Here, in Theorem 3.5, Ăn = An(In − τnAn)
−1, and, therefore, (In − τnAn)

−kn = (In + τnĂn)
kn .

Theorem 3.6 ([203]). Assume that conditions (A) and (B) of the Theorem 3.1 hold and condition

τn‖A
2
n‖ = O(1) (3.4)

is fulfilled. Then the difference scheme

Un(t+ τn)− Un(t)

τn
= AnUn(t), Un(0) = u0n, (3.5)

is stable, i.e., ‖(In + τnAn)
kn‖ ≤ Meωt, t = knτn ∈ R+, and gives an approximation of the solution of

problem (3.1), i.e., Un(t) ≡ (In+τnAn)
knu0n → u(t) P-converges uniformly with respect to t = knτn ∈ [0, T ]

as n→∞, kn →∞, τn → 0.

Theorem 3.7 ([161]). Assume that conditions (A) and (B1) of Theorem 3.2 hold and condition

τn‖An‖ ≤ 1/(M + 2), n ∈ N (3.6)

is fulfilled. Then the difference scheme (3.5) is stable and gives an approximation of the solution of
problem (3.1), i.e., Un(t) ≡ (In + τnAn)

knu0n → u(t) discretely P-converge uniformly with respect to
t = knτn ∈ [0, T ] as u0n → u0, n→∞, kn →∞, τn → 0.

Let us introduce the following conditions:
(B′1) Stability. There are constants M ′ and ω′ such that

‖ exp(tAn)‖ ≤M ′eω
′t, ‖An exp(tAn)‖ ≤

M ′

t
eω
′t, t ∈ R+.

(B′′1 ) Stability. There are constants M ′′, ω′′, and τ∗ > 0 such that

‖(In − τnAn)
−k‖ ≤M ′′eω

′′kτn, ‖kτnAn(In − τnAn)
−k‖ ≤M ′′eω

′′kτn, 0 < τn < τ∗, n, k ∈ N.
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Proposition 3.1 ([183]). Conditions (B1), (B
′
1), and (B′′1 ) are equivalent.

Theorem 3.8. Conditions (A) and (B′′1 ) are equivalent to condition (C1).

Theorem 3.9 ([164]). Let the assumptions of Theorem 3.7 and (3.4) be satisfied. Then

tAn(In + τnAn)
kn → tA exp(tA) uniformly in t = knτn ∈ [0, T ]. (3.7)

Conversely, if (In+τnAn)
kn → exp(tA) uniformly in t = knτn ∈ [0, T ] and (3.7) is satisfied, then condition

(C1) holds.

Theorem 3.10 ([164]). Let condition (B1) hold. Then

‖ exp(tAn)− (In − τnAn)
−kn‖ ≤ c

τn
t
eωt.

If, moreover, the stability condition (3.6) holds, then

‖ exp(tAn)− (In + τnAn)
kn‖ ≤ c

τn
t
eωt,

‖(exp(tAn)− (In + τnAn)
kn)xn‖ ≤ cτne

ωt‖Anxn‖,

‖An(exp(tAn)− (In + τnAn)
kn)xn‖ ≤ c

τn
t
eωt‖Anxn‖, t = knτn.

In the case of analytic C0-semigroups for the forward scheme, as we saw, the stability condition

τn‖An‖ < 1/(M + 2)

cannot be improved even in Hilbert spaces for self-adjoint operators. In the case of almost periodic
C0-semigroups and the forward scheme for differential equations of first order in time (3.1), one obtains
necessary and sufficient stability condition τn‖An‖ < 1 [163]. It was discovered that the stability condition
of the forward scheme like (3.5) for the positive C0-semigroups also can be written in the form τn‖An‖ < 1;
see [168]. Stability of difference schemes under some spectral conditions were obtained in [26].

The stability of difference schemes for differential equations in Hilbert spaces in the energy norm are
investigated in [179,180], where schemes with weights were also considered. Semidiscrete approximations
are studied also in [180].

3.2. Rational approximation. Let us denote by Pp(z) an element of the set of all real polynomials of

degree no greater than p and by πp,q the set of all rational functions rp,q(z) =
Pp(z)

Pq(z)
and Pq(0) = 1. Then

a Padé (p, q)-approximation for e−z is defined as an element Rp,q(z) ∈ πp,q such that

|e−z −Rp,q(z)| = O(|z|p+q+1) as |z| → 0.

It is well known that a Padé approximation for e−z exists, is unique and is represented by the formula
Rp,q(z) = Pp,q(z)/Qp,q(z), where

Pp,q(z) =

p∑
j=0

(p+ q − j)!p!(−z)j

(p+ q)!j!(p − j)!
, Qp,q(z) =

q∑
j=0

(p+ q − j)!q!zj(p+ q)!j!(q − j)!.

In [174, 175], details of the location of poles and the order of convergence of rational approximations in
different regions are given.

Definition 3.3. A rational approximation rp,q(·) ∈ πp,q for e−z is said to be
(a) A-acceptable if |rp,q(z)| < 1 for Re(z) > 0;
(b) A(θ)-acceptable if |rp,q(z)| < 1 for z ∈ Σ(θ) = {z : −θ < arg(z) < θ, z �= 0}.

It is well known that Rq,q(z), Rq−1,q(z), and Rq−2,q(z) are A-acceptable. But for q ≥ 3 and p = q−3,
the Padé functions are not A-acceptable.
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Theorem 3.11 ([175]). For any q ≥ 2 and p ≥ 0, the Padé approximation of e−z has no poles in the
sector

Sp,q =
{
z : | arg(z)| < cos−1

(q − p− 2

p+ q

)}
;

in particular, for p ≤ q ≤ p+ 4 all poles lie in the left half-plane.

Since r(·) ∈ πp,q is an approximation of e−z, it is natural to construct the operator-function r(τnAn)
k

which can be considered as an approximation of exp(tAn) for t = kτn. For simplicity, we assume in this
section that ‖ exp(tAn)‖ ≤M, t ∈ R+.

Theorem 3.12 ([44]). Let condition (B) be satisfied. There is a constant C depending on r such that if
r is A-acceptable, then

‖r(τnAn)
k‖ ≤ CM

√
k for τn > 0, k ∈ N.

Remark 3.1. The term
√
k in Theorem 3.12 cannot be removed in general; moreover, there are examples

[55,97], which show that the inequality ‖r(τnAn)
k‖ ≥ c

√
k, k ∈ N, holds.

We say that r(·) ∈ πp,q is accurate of order 1 ≤ d ≤ p+ q if |e−z − r(z)| = O(|z|d+1) as |z| → 0.

Theorem 3.13 ([44]). Let condition (B) be satisfied. Then there is a constant C depending on r such
that, if r is A-acceptable and accurate of order d, then

‖r(τnAn)
ku0n − exp(tAn)u

0
n‖ ≤ CMτd

n‖A
d+1
n u0n‖ for τn > 0, k ∈ N, u0n ∈ D(Ad+1

n ).

Theorem 3.14 ([44]). Let condition (B1) be satisfied. Then there is a constant C depending on r, such
that if r is A-acceptable and accurate of order d, then

‖r(τnAn)
ku0n − exp(tAn)u

0
n‖ ≤ CMτd

n‖A
d
nu
0
n‖ for τn > 0, k ∈ N, u0n ∈ D(Ad

n).

Theorem 3.15 ([162,185]). Let condition (B1) be satisfied. Then there is a constant C depending on r,
such that if r is A-acceptable and accurate of order d with |r(∞)| < 1 or condition (3.6) is satisfied, then

‖r(τnAn)
ku0n − exp(tAn)u

0
n‖ ≤ CM

τ
γ
n

td−γ
‖Aγ

nu
0
n‖ for τn > 0, 0 ≤ γ ≤ d, t = kτn, k ∈ N.

In [54,152,154], the analogs of Theorems 3.13–3.15 were proved for multistep methods.

Let us recall that constant M2 in condition (B1), which defines α, 0 < α <
π

2
, by M2 sinα < 1 [110]

is such that

‖(λIn −An)
−1‖ ≤

M

|λ− ω|
for any λ ∈ Σ(π/2 + α). (3.8)

Theorem 3.16 ([55,150]). Let condition (B1) be satisfied. Then there is a constant C depending on r,
such that if r is A(θ)-acceptable, accurate of order d, and θ ∈ (π/2 − α, π/2] for α from condition (3.8),
then

‖r(τnAn)
k‖ ≤ CM for τn > 0, k ∈ N,

and

‖r(τnAn)
k − exp(tAn)− γk exp(−τ−b

n akn(−An)
−b)‖ ≤ CM(k−d

n + k−1/bn ), t = knτn,

where γ = r(∞) and a, b are some positive constants.

It is possible to show [151] that
∏k

j=1 r(τn,jAn) is a stable approximation for exp(
∑k

j=1 τn,jA) with

a variable stepsize, but under condition 0 < c ≤ τn,i/τn,j ≤ C <∞, i, j ∈ N.
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3.3. Richardson’s Extrapolation method. Let us consider schemes (3.3) and (3.5) which have the
order of convergence O(τn) and denote Uτn

n (kn) = Un(t)u
0
n and U

τn
n (kn) = Un(t)u

0
n, t = knτn. The following

approach to the limit is valid.

Theorem 3.17 ([167]). Assume that condition (B) is satisfied. Then for V n(t) = 2U
τn
n (kn)−U

τn/2
n (2kn),

one has

‖V n(t)− un(t)‖ ≤ τ2nMeωtt2‖A3nu
0
n‖, t = knτn.

If, in addition, scheme (3.5) is stable, then for Vn(t) = 2Uτn
n (kn)− U

τn/2
n (2kn), t = knτn,

‖Vn(t)− un(t)‖ ≤ τ2nMeωtt2‖A3nu
0
n‖, t = knτn.

Let us consider the Crank–Nicolson scheme

Ũn(kτn + τn)− Ũn(kτn)

τn
= An

Ũn(kτn + τn) + Ũn(kτn)

2
, Ũn(0) = In, k ∈ N0, (3.9)

Theorem 3.18 ([167]). Assume that condition (B) is satisfied and that scheme (3.9) is stable. Then

ψn(t) =
4

3
Ũ

τn/2
n (2kn)−

1

3
Ũτn

n (kn) satisfies

‖ψn(t)− un(t)‖ ≤ cτ4ne
ωtt2‖A6nu

0
n‖, t = knτn.

In general, we set Vτn
n (t) = Rp,q(τnAn)

knu0n, t = knτn.

Theorem 3.19 ([167]). Assume that condition (B) is satisfied, p = q and the scheme which corresponds

to Vτn
n is stable. Then for ψn(t) = −

1

22q − 1
Vτn

n (t) +
22q

22q − 1
V

τn/2
n (t),

‖ψn(t)− un(t)‖ ≤ cτ2q+2n eωt

(
t3/2
√
τn
‖A2q+3n u0n‖+ t3τ2q−3n ‖A4q+2n u0n‖

)
, t = knτn.

Theorem 3.20 ([167]). Assume that condition (B1) is satisfied, p = q and τn‖An‖ ≤ const. Then for

0 ≤ γ ≤ 2q and ψn(t) = −
1

22q − 1
Vτn

n (t) +
22q

22q − 1
V

τn/2
n (t),

‖ψn(t)− un(t)‖ ≤ c
τ2q+2n

t2q+2−γ
eωt‖Aγ

nu
0
n‖, t = knτn.

3.4. Lax-type equivalence theorems with orders. The Lax equivalence theorem on the convergence
of the solution of the approximation problem to the solution of the given well-posed Cauchy problem states
that the stability of the method is necessary and sufficient for the convergence provided it is compatible.
Recently, Lax’s theorem with orders, which make it possible to consider “unstable” approximations, was
obtained.

Definition 3.4. C0-semigroups exp(tAn) and exp(tA) are said to be compatible of order O(ϕ(τn)) on a
linear manifold U ⊂ E with respect to the semigroup exp(·A) if exp(tA)U ⊆ D(A) and there is a constant
C such that

‖(Anpn − pnA) exp(tA)x‖ ≤ Cτnϕ(τn)e
ωt|x|U for any x ∈ U , (3.10)

where | · | denotes the seminorm on U .

Definition 3.5. C0-semigroups exp(tAn) is said to be stable of order O(Mne
ωnt) if there are constants

Mn and ωn such that

‖ exp(tAn)‖ ≤Mne
ωnt for any t ∈ R+. (3.11)

The following is a slight modification of [47–50] and [66–68], which was proved in [164].
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Theorem 3.21. Let a C0-semigroup exp(·An) be compatible of order O(ϕ(τn)) on a linear manifold
U ⊂ E with respect to a semigroup exp(·A), exp(tA)U ⊂ U , and let | exp(tA)x|U ≤M |x|U . The following
assertions are equivalent:

(i) ‖ (exp(tAn)pn − pn exp(tA)) x‖ ≤ 2Mne
ωntK

(
Cn

2
tϕ(τn), x;E,U

)
;

(ii) ‖
(
exp(tAn)pn − pn exp(tA)

)
x‖ ≤Mne

ωnt




Mx, x ∈ E,

Cn

2
tϕ(τn)|x|U , t = knτn ∈ [0, T ], x ∈ U ;

(iii) ‖ exp(tAn)‖ ≤Mne
ωnt, ‖(Anpn − pnA) exp(tA)x‖ ≤ Cnτnϕ(τn)e

ωt|x|U for any x ∈ U , t ∈ R+,

where Mx is a constant depending only on x and K(t, x;E,U) = inf
y∈U

{
‖x−y‖E+t|y|U

}
is Peetre functional.

Definition 3.6. A family of discrete semigroups {Un(knτn)} is said to be compatible of order O(ϕ(τn))
on a linear manifold U ⊂ E with respect to the semigroup exp(·A) if U = E and

‖(Un(τn)pn − pn exp(τnA)) exp(tA)x‖ ≤ Cτnϕ(τn)|x|U for any x ∈ U . (3.12)

Theorem 3.22. Let exp(tAn)Un ⊂ Un, let condition (B) hold, and let | exp(tAn)x|Un ≤ Ceωt|xn|Un for
any xn ∈ Un and t > 0. Then the following conditions are equivalent:

(a) ‖(Un(knτn)− exp(knτnAn))xn‖ ≤MnK

(
Cnknτn

2
ϕ(τn), xn, En,Un

)
, n, kn ∈ N;

(b) ‖(Un(knτn)− exp(knτnAn))xn‖ ≤Mn




Mxn , xn ∈ En,

Cn

2
tetωϕ(τn)|xn|Un , xn ∈ Un;

(c) ‖Un(knτn)‖B(En) ≤ Mn, ‖(Un(τn) − exp(τnA)) exp(tAn)xn‖ ≤
CnMn

2
τne

ωtϕ(τn)|xn|Un , where

knτn = t ∈ [0, T ].

Definition 3.7. A family of discrete semigroups {U(knτn)} is said to be stable of order O(1/ψ(n−1)) if

‖Un(knτn)‖B(En) ≤ C/ψ(n−1) for n, kn ∈ N, 0 < τn ≤ τ∗, τnkn ∈ [0, T ]. (3.13)

Theorem 3.23. Let a discrete semigroup {U(knτn)} be compatible of order O(ϕ(τn)) on a linear manifold
U ⊂ E with respect to the semigroup exp(·A). The following assertions are equivalent:

(i) ‖Un(knτn)‖B(En) ≤ C/ψ(n−1);

(ii) ‖(Un(knτn)pn − pn exp(knτnA))x‖ ≤
C

ψ(n−1)
K(knτnϕ(τn), x;E,U), n, kn ∈ N;

(iii)

‖(Un(knτn)pn − pn exp(knτnA))x‖ ≤
C

ψ(n−1)

{
Mx, x ∈ E,

knτnϕ(τn)|x|U , knτn ∈ [0, T ], x ∈ U ,

where Mx is a constant depending only on x.

Theorem 3.24. Let | exp(tA)x|U ≤ C|x|U for any x ∈ U and t ∈ [0, T ]. Then the following conditions
are equivalent:

(i) The family of operators {U(knτn)} is compatible of order O(ϕ(τn)) on a linear manifold U ⊂ E
with respect to the semigroup exp(·A) and stable of order O(1/φ(n−1));

(ii) ‖(Un(knτn)pn − pn exp(knτnA))x‖ ≤
C

ψ(n−1)
K(knτnϕ(τn), x;E,U), n, kn ∈ N;

(iii) ‖(Un(knτn)pn − pn exp(tA))x‖ ≤
C

ψ(n−1)

{
Mx, x ∈ E,

knτnϕ(τn)|x|U , t = knτn ∈ [0, T ], x ∈ U .
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On an extension of Lax–Richtmyer theory see [157,181].
For a particular case where E = Lp(Rd) and the operator A ≡ P (D) =

∑
|α|≤r

pαD
α on E, one can

consider the Cauchy problem

∂u(x, t)

∂t
= P (D)u(x, t), u(x, 0) = u0(x), x ∈ R+, (3.14)

with P (D) such that (3.14) is well-posed in the sense ‖u(·, t)‖Lp(R) ≤ c ‖u0(·)‖Lp(R), t ∈ R+.

Let us denote P̂ (ξ) =
∑
|α|≤r

pα(iξ)
α. It is well known that (3.14) is well-posed iff ‖ exp(tP̂ )‖Mp ≤

C, t ∈ R+, where Mp is the space of Fourier multipliers.
The semidiscrete approximation of (3.14) is given by

∂un(x, t)

∂t
= Ph(D)un(x, t), un(x, 0) = u0n(x), x ∈ R+, (3.15)

where Ph(Dh) = h−r
∑
|α|≤r

pα(h)
∑

β∈Iα

bβun(x+βh, t) and P̂h(ξ) = h−r
∑
|α|≤r

pα(h)
∑

β∈Iα

bβe
i〈ξ,hβ〉. The opera-

tor Ph(Dh) is said to be compatible with the operator P (D) of order µ if P̂h(ξ)−P̂ (ξ) = hµ|ξ|r+µQ(hξ), r =

deg P̂h(ξ), Q is an infinitely differentiable function, and |Q(η)| ≥ Q0 > 0 for 0 < |η| ≤ ε0.

Theorem 3.25 ([43]). Let P (D) and Ph(Dh) be compatible of order µ, and (3.14) and let (3.15) be
well posed. Then for every T > 0, there exists C > 0 such that ‖(etPh(Dh) − exp(tP (D))u0‖L2(Rd) ≤

chµ‖u0‖W 2,r+µ(Rd), and for 0 < s < r + µ,

‖(etPh(Dh) − exp(tP (D))u0‖L2(Rd) ≤ ch
sµ
µ+r ‖u0‖Bs2 ,

‖(etPh(Dh) − exp(tP (D)))u0n‖L∞(Rd) ≤ ch
sµ
µ+r ‖u0‖

B
d/2+s
2

,

where Bθ
p = Bθ

p,∞ is the Besov space.

It is remarked in [32] that for a quite general case, Bθ
p,q = (Lp(R),D(A))θ,q.

If we consider a full discretization scheme for (3.14) in the form LhU
k+1
n = BhU

k
n , k = 0, 1, 2, . . . ,

where Lhv =
∑
β

aβ(h)v(x + βh) and Bhv =
∑
β

bβ(h)v(x + βh), then a discrete semigroup can be con-

structed as Un(kτn)u
0
n = F−1

(
Ûk

n(ξ)û
0
n

)
, Ûn(ξ) = B̂n(ξ)/L̂n(ξ), B̂n(ξ) =

∑
β

aβ(h)e
〈ξ,βh〉 (the time step τn

is connected with h by τn/h
r = const). Such a finite-difference operator Un(kτn) approximates (3.14)

with order µ if Ûn(ξ) = eτnP̂ (ξ) +O(hr+µ + |ξ|r+µ) as ξ, h→ 0.

Theorem 3.26 ([43]). Let (3.14) be well-posed and let Un(kτn) be stable in E = L2(Rd) and approximate
(3.14) with order µ > 0. Then for any T > 0, there is a constant c > 0 such that

‖(Un(t)− exp(tP (D)))u0n‖L2(Rd) ≤ chµ‖u0n‖W 2,r+µ(Rd),

and for 0 < s < r + µ

‖(Un(t)− exp(tP (D)))u0‖L2(Rd) ≤ ch
sµ
µ+r ‖u0‖Bs2 ,

‖(Un(t)− exp(tP (D)))u0‖L∞(Rd) ≤ chµ‖u0‖
B
d/2+µ+r
2,1

,

‖(Un(t)− exp(tP (D)))u0‖L∞(Rd) ≤ ch
sµ
µ+r ‖u0‖

B
d/2+s
2

, t = kτn ∈ [0, T ].

Conversely, the order of convergence implies the smoothness of u0n; see [32,43].
The time discretization of parabolic problems with memory by the backward Euler method was

considered in [27]. The stability and error estimates take place in the Banach space framework, and
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the results are used for obtaining error estimates in the L2 and maximum norms for piecewise-linear
finite-element discretizations in two space dimensions.

4. Backward Cauchy Problem

In a Banach space E, let us consider the backward Cauchy problem:

v′(t) = Av(t), t ∈ [0, T ],

v(T ) = vT ,
(4.1)

where the element v(0) is unknown. At least in two important cases it is not a well-posed problem; namely,
if A is unbounded and generates an analytic C0-semigroup or if the C0-semigroup exp(·A) is compact.
Indeed, in these situations, the problem exp(TA)x = vT is ill posed [51, 100, 196] in the sense that the
operator exp(−TA) is not bounded on E and, moreover, D(exp(−TA)) �= E in general. This means that
in general the Cauchy problem (4.1) has a solution only for some (but not every) initial data vT and the
solution v(0), if it is exists, does not depend continuously on the initial data. After changes of variables,
setting v(η) = u(T − η), one can rewrite the problem (4.1) in the form

u′(t) = −Au(t), t ∈ [0, T ],

u(0) = u0,
(4.2)

where u0 = vT is given and u(T ) is the element to be found. In this section, we consider the approximation
of (4.2) with operator A, generating an analytic C0-semigroup.

Definition 4.1. A bounded linear operator Rε,T on the space E is called a regularizator for the Cauchy
problem (4.2) if for any δ > 0 and any u0 ∈ E for which a solution of (4.2) exists, there exists ε = ε(δ) > 0
such that ε(δ)→ 0 as δ → 0 and sup

‖uδ−u0‖≤δ

‖Rε(δ),T u
δ − exp(−TA)u0‖ → 0 as δ → 0.

In [140], it is proved that for the existence of a linear regularizator of the problem (4.2) that commutes
with operator A, it is necessary and sufficient that −A generate Cε-semigroups Sε(t), 0 ≤ t ≤ T , such
that Cε strongly converges to the identity operator I as ε→ 0.

There are many regularizators, which can be considered for problem (4.2). For example, in [165], it
was shown that if −A2n generates a cosine operator function, then the method of quasi-reversibility, which
is given by the Cauchy problems

u′n,α(t) = −Anun,α(t)− αA2nun,α(t), un,α(0) = u0n,

is a regularization method for (4.2), and ‖un,α(T )−pnu(T )‖ ≤ Cα
(
‖u0n−pnu

0‖/δ+ρ
)
, where α = α(δ) =

1/
(
log(1/δ)−log log(1/δ)−o(log−1(1/δ))

)
. In this case Sα(t) ≡ exp(−tA) exp(−αTA2) is a Cα-semigroup

with Cα = exp(−αTA2) and Cα → I as α→ 0. Moreover, the generator of this Cα-semigroup is −A.
It has been shown in [60] that the stochastic differential equation

duα(t) = −Auα(t)dt− αAuα(t)dw(t),

u(0) = u0,
(4.3)

where w(·) is the standard one-dimensional Wiener process, yields a stochastic regularization of (4.2).
Explicitly, the operator-function

Uα(t)u
0 =

1

2πi

∫
Γ
e
−tλ−α

(
w(t)−w(0)

)
λ− 1

2
α2λ2|t|

(λ−A)−1u0dλ, t > 0,
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which represents a solution of (4.3) for any u0 ∈ Ac(A), possesses the following properties:

lim
α→0

‖Uα(T )u
0 − exp(−TA)u0‖ = 0, (4.4)

‖Uα(t)‖ ≤
c1

α
√
|t|

exp

(
c2

√
|t|

α
+ c3|t|

−µ)2

)
+ b(α, |t|) for any α > 0. (4.5)

Here, the function b(α, t) is bounded in the parameters α and t and Ac(A) is the set of entire vectors of
the operator A. By virtue of the inequality

‖Uα(T )u
δ − exp(−TA)u0‖ ≤ ‖Uα(T )‖ ‖u

δ − u0‖+ ‖Uα(T )u
0 − exp(−TA)u0‖, (4.6)

this means that there is a dependence on α = α(δ) such that Uα(T ) becomes a regularizator. The operator

function t "→ exp
(
(T − t)A

)
Uα(T ), 0 ≤ t ≤ T , is a Cα-semigroup with Cα = exp(TA)Uα(T ). One can

see that Cα → I as α→ 0, and that the generator of this Cα-semigroup is −A.

4.1. C-semigroups and ill-posed problems. Let C be a bounded linear operator on the Banach space
E, i.e., C ∈ B(E), and let T > 0 be some finite number.

Definition 4.2 ([191]). A family of bounded operators {S(t) : 0 ≤ t < T} is called a local C-semigroup
on E if

(i) S(t+ s)C = S(t)S(s) for t, s, t+ s ∈ [0, T );
(ii) S(0) = C;
(iii) S(·) is strongly continuous on [0, T ).

Clearly, S(·) is a commutative family. A local C-semigroup is said to be nondegenerate if the
condition S(t)x = 0 for all t ∈ (0, T ) implies x = 0. It is seen from Definition 4.2 that a local C-semigroup
is nondegenerate [63] if and only if C is injective, i.e., N (C) = {0}. Concerning construction with
N (C) �= {0} see [112], [113]. It is very interesting question how to apply the case of noninjective C, i.e.
degenerate C-semigroups, for ill-posed problems. Unfortunately this approach still is not realized.

Starting from now on, we will consider only the case where C ∈ B(E) is an injective operator.

Definition 4.3. The generator of {S(t) : 0 ≤ t < T} is defined as the limit

−Gx := C−1 lim
h→0+

1

h
(S(h)x − Cx), x ∈ D(G),

with the natural domain D(G) := {x ∈ E : ∃ lim
h→0+

1

h
(S(h)x− Cx) ∈ R(C)}.

Proposition 4.1 ([182]). The operator G is closed, R(C) ⊆ D(G) and C−1GC = G.

We denote the C-semigroup S(·) with the generator −G by S(·G). Next, let τ ∈ (0, T ). We set

Lτ (λ)x :=

∫ τ

0
e−λtS(tG)xdt, x ∈ E,λ > 0. (4.7)

This is the so-called local Laplace transform of S(·G).

Proposition 4.2. Let S(·G) be a local C-semigroup and let Lτ (·) be the local Laplace transform of S(·G).
Then, for any x ∈ E, one has Lτ (λ)x ∈ D(G) and

(λ+G)Lτ (λ)x = Cx− e−λτS(τG)x for all τ ∈ [0, T ) and λ > 0. (4.8)

In the case of local C-semigroups, the spectrum σ(−G) can be located on the half-line [0,∞). There-
fore, in this case the Laplace transform of the local C-semigroup does not exist in general, and we follow
the ideas of [30,182,191]. The function Lτ (λ) with property (4.8) is called an asymptotic resolvent.
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Theorem 4.1 ([182]). Let A be a closed linear operator on E and let C ∈ B(E) be injective.
(i) If the operator A is the generator of a local C-semigroup {S(t); 0 ≤ t < T} on E, then there exists

an asymptotic C-resolvent Lτ (λ) of −A such that∥∥∥∥ dm

dλm
Lτ (λ)x

∥∥∥∥ ≤Mτ
m!

λm+1
‖x‖, x ∈ E, (4.9)

with 0 ≤ m/λ ≤ τ, λ > a,m ∈ N ∪ {0}, and the operator A satisfies C−1AC = A.
(ii) If −A has an asymptotic resolvent which satisfies (4.9), and CD(A) is dense in D(A),

D(C−1AC) ⊂ D(A), i.e., Cx ∈ D(A) and ACx ∈ R(C) imply x ∈ D(A), then the part A0 of A in

E0 := D(A) generates a local C-semigroup on E0 with C equal to C0 := C|E0 .
In particular, under the assumption that CD(A) = E, the operator −A generates a local C-semigroup

on E if and only if C−1AC = A and there exists an asymptotic C-resolvent satisfying (4.9). In this case,
A has a dense domain.

Remark 4.1. An asymptotic C-resolvent Lτ (λ) of operator −A is compact for some λ ∈ C (and then
for any λ large enough) if and only if S(·A) is compact and uniformly continuous in t. Indeed, if S(·A) is
compact then by (4.7) and [220], it follows that Lτ (λ) is compact. Conversely, taking derivative of Lτ (λ)
in τ and using the fact that S(·A) is uniformly continuous in t we have that S(·A) is compact as the
uniform limit of compact operators. This fact could be used in the approximation of semilinear equations
in case of the C-semigroups approach (see Sec. 6).

Let us consider the abstract Cauchy problem, which is given by (4.2).

Definition 4.4. A function u(·) is called a solution of (ACP ;T, y) if u(·) is continuously differentiable
in t ∈ [0, T ), u(t) ∈ D(A) for all 0 ≤ t < T , and u(·) satisfies (4.2). We denote by (ACP ;T,CD(A)) the
problem (ACP ;T, y) with y ∈ CD(A).

Definition 4.5. The Cauchy problem (ACP ;T,CD(A)) is said to be generalized well-posed if for every
y ∈ CD(A), there is a unique solution u(·; y) of (ACP ;T, y) such that ‖u(t; y)‖ ≤ M(t)‖C−1y‖ for
0 ≤ t < T and y ∈ CD(A), where the function M(t) is bounded on every compact subinterval of [0, T ).

It should be stressed here that the generalized well-posedness in the sense of Definition 4.5 is more
general than that in the case of the problem in (3.1). Moreover, we can state that this generalized
well-posedness is a solvability condition of (4.2) for which a regularizator exists.

Theorem 4.2 ([182]). Let C be a bounded linear injection on E, and let A be a closed linear operator.
Then the following assertions are equivalent:

(I) The operator −A is the generator of a local C-semigroup;
(II) C−1AC = A, and the problem v′(t) = −Av(t) + Cx, t ∈ [0, T ), v(0) = 0, has a unique solution

for every x ∈ E.
If either ρ(A) �= ∅ or A has a dense domain, (I) and (II) are also equivalent to
(III) C−1AC = A, and the problem (ACP ;T,CD(A)) is generalized well-posed. Moreover, u(t; y) =

C−1S(tA)y, t ∈ [0, T ), is a unique solution for every initial value y ∈ CD(A).

Since local C-semigroups are regularizators of the ill-posed problem (4.2) it is very important to
present the approximation theory of local C-semigroups.

4.2. Semidiscrete approximation theorem. Within the general discretization scheme, let us consider
the semidiscrete approximation of the problem (4.2) in the Banach spaces En :

u′n(t) = −Anun(t), t ∈ [0, T ),

un(0) = u0n,
(4.10)

where the operators −An are generators of local Cn-semigroups which are compatible with the operator
−A and u0n → u0. We understand compatibility in the sense of the general approximation scheme as the
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PP-convergence of Cn → C and the PP-convergence of resolvents (λ̃In −An)
−1 → (λ̃I −A)−1 for some

λ̃ ∈ ρ(A) ∩ ρ(An). Recall that in our general case (4.1), such a λ̃ does exist, since conditions (A) and (B)
from Theorem 3.1 are naturally assumed to be satisfied.

Theorem 4.3 ([214] (Theorem ABC-C)). Under the assumption CD(A2) = E, the following conditions
(Ac) together with (Bc) are equivalent to condition (Cc).

(Ac) Compatibility. Cn → C and operators An and A are compatible;
(Bc) Stability. For any 0 < τ < T there is some constant Mτ independent of n such that

‖S(tAn)‖ ≤Mτ for 0 ≤ t ≤ τ and n ∈ N;

(Cc) Convergence. For any 0 < τ < T , we have

max
t∈[0,τ ]

‖S(tAn)x
0
n − pnS(tA)x

0‖ = 0, as n→∞,

whenever x0n → x0.

Remark 4.2. In the case of exponentially bounded C-semigroups [64,65] we can trivially change condi-
tion (Ac) to the condition

(A’) Cn → C and (λ̃−An)
−1Cn → (λ̃−A)−1C for some λ̃ ∈ C;

see [225] for details. Since, the construction can be done just as with condition (A’), in this case, we do

not need to assume that (λ̃−An)
−1 → (λ̃−A)−1 for some λ̃.

Remark 4.3. We have set the condition CD(A2) = E for simplicity. For the general case one obtains

the convergence on the set CD(A2). In the case of integrated semigroups, such situations have been well
investigated; see, e.g., [33, 35]. Actually, the paper [33] is devoted to the following effect observed in the
study of convergence of semigroups. Suppose we are given a sequence of uniformly bounded semigroups
{exp(tAn), t ≥ 0}, n ≥ 1 (‖ exp(tAn)‖ ≤ M, t ∈ R+) acting on the Banach space E. Assume furthermore
that the limit limn→∞(λI −An)

−1x = S(λ)x exists for any x ∈ E. If

R(S(λ)) = E (4.11)

(R(S(λ)) is common for all λ > 0), the semigroups in question strongly converge, by the Trotter–Kato
theorem. One can also show that if condition (4.11) is relaxed, the limit

lim
n→∞

exp(tAn)x (4.12)

exists for all x ∈ R(S(λ)) (see e.g. [115], [70, p. 34], or [33,35]). As observed by T.G. Kurtz [115] for any
x ∈ E, there exists the limit

lim
n→∞

∫ t

0
exp(sAn)xds. (4.13)

In general, however, one cannot expect that (4.12) holds for x �∈ R(S(λ)). This effect is of course related to
Arendt’s theorem, or rather to the generation theorem for “absolutely continuous integrated semigroups”
presented in [37].

Let us consider the following semidiscretization of problem (4.3) in Banach spaces En:

dun,α(t) = −Anun,α(t)dt− αAnun,α(t)dw(t),

un,α(0) = u0n,
(4.14)

where u0n → u0, the operators An generate analytic semigroups, and {(Ω,F ,P) , w(t)} is the standard
one-dimensional Wiener process (Brownian motion). As usual, the symbol E[·] denotes the mathematical
expectation.

We emphasize that the situation where σ(An), σ(A) ⊂ C \Σ

(
3

4
π

)
is considered.

16



Theorem 4.4 ([214]). Let the conditions (A) and (B1) of Theorem 3.2 be satisfied, and let δn > 0 be a
sequence which converges to 0 as n → ∞. Then there exists a sequence αn such that un,αn(t) → u(t)
for every t ∈ [0, T ] as n → ∞. Here un,αn(·) is a solution of (4.14) and u(·) is a solution of (4.2) with
u0 ∈ Ac(A). The convergence is understood in the following sense:

sup
‖u0n−pnu0‖≤δn

‖un,αn(t)− pnu(t)‖ → 0, P-almost surely as δn → 0.

4.3. Approximation by discrete C-semigroups. Following Sec. 3, we denote by {Tn(·)} a family of
discrete semigroups, on En, respectively, i.e., Tn(t) = Tn(τn)

kn , where kn = [t/τn].We define the generator

of Tn(·) by the formula −An =
1

τn
(Tn(τn)− In) and consider the process τn → 0, kn → ∞, n → ∞. We

assume that Cn ∈ B(En) is an injective operator such that TnCn = CnTn. The discrete Cn-semigroup
Un(·) is defined as Un(t) = Tn(t)Cn. In this subsection we also assume that the dimension of each of the
spaces En is finite, but dim (En)→∞ as n→∞.

Theorem 4.5 ([214] (Theorem ABC-C-discr)). Under condition (A) of Theorem 3.1 and the assumption

CD(A2) = E, the following conditions (Acd) and (Bcd) together are equivalent to condition (Ccd).
(Acd) Compatibility. Cn → C, the operators An, A are compatible, and An ∈ B(En), n ∈ N;
(Bcd) Stability. For any 0 < τ < T , there is some constant Mτ , independent of n, such that

‖Un(t)‖ ≤Mτ for all 0 ≤ t ≤ τ < T and n ∈ N

is satisfied uniformly for any choice of {τn} and {kn} as long as τn → 0, and kn = [t/τn];
(Ccd) Convergence. For any 0 < τ < T , maxt∈[0,τ ] ‖Un(t)x

0
n − pnS(tA)x0‖ → 0 as τn → 0, n → ∞,

whenever x0n → x0.

Theorem 4.6 ([214]). Let the conditions (Ac) and (Bc) be satisfied. Assume that condition (A) of The-

orem 3.1 and the assumption CD(A2) = E are satisfied and also that τn‖A2nC
−1
n ‖ ≤

q

MτT
with q < 1.

Then
‖Un(t)‖ ≤Mτ (1− q)−1 for 0 ≤ t ≤ τ < T and any n ∈ N

uniformly for any choice of {τn} and {kn} with τn → 0, as long as kn =

[
t

τn

]
. Moreover, for any

0 < τ < T , maxt∈[0,τ ] ‖Un(t)x
0
n − pnS(tA)x0‖ → 0 as τn → 0, n→∞, whenever x0n → x0.

Remark 4.4. In fact, the scheme Un(t) ≡ (I + τnAn)
−knCn with t = knτn can be constructed even

under condition (3.4). Indeed, τnAn = τnλAn(λIn − An)
−1 − τnA

2
n(λIn − An)

−1, and by the choice of λ
we can make the second term less than ε, and then by choosing τn appropriately for a fixed λ, we obtain
‖τnAn‖ ≤ 2ε, so that the scheme Un(·) is well defined.

Remark 4.5. In contrast to the well-posed case, for ill-posed problems it looks that the implicit and
explicit methods of discretization in time are not so different in the sense of stability advantages (compare
with Theorems 3.5 and 3.6). Moreover, under condition (3.4), it follows from the identity

(In − τnAn)
knCn = (In − τ2nA

2
n)

kn(In + τnAn)
−knCn

and inequality

‖(In ± τ2nA
2
n)

kn‖ ≤ Cetτn‖A
2
n‖, t = knτn,

that the stability properties of the implicit and explicit methods are the same.

There are a lot of stochastic finite-difference schemes which could be written for problem (4.14). For
example, some of the simplest are

Un,α(t+ τn)− Un,α(t) = −τnAnUn,α(t)− α∆w(t)AnUn,α(t), (4.15)

Ūn,α(t+ τn)− Ūn,α(t) = −τnAnŪn,α(t+ τn)− α∆w(t)AnŪn,α(t), (4.16)
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where ∆w(t) =
(
w(t)− w(t− τn)

)
, t = knτn, and Un,α(0) = Ūn,α(0) = In.

Theorem 4.7 ([214]). Let the conditions (A) and (B1) of Theorem 3.2 be satisfied. Assume that the
stability conditions (3.4) and τn‖A2n‖e

c‖An‖ = O(1) are fulfilled for some constant c > 0. Then for αn =
√
τn the scheme (4.15) has the stable behavior in the following sense:

ηn := sup
n∈N

sup

{
E

[∥∥∥∥Un,αn(t)u
0
n − exp

(
−tAn + αn(w(t) − w(0))An −

t

2
α2nA

2
n

)
u0n

∥∥∥∥
]
: ‖u0n‖ ≤ 1

}
→ 0,

and converges in the following sense:

E
[
‖Un,αn(t)u

0
n − pnu(t)‖

]
≤ C

√
τn‖A exp(−TA)u0‖+ ‖un,αn(t)− pnuαn(t)‖+ Cηn‖u

0
n‖, 0 < t ≤ T.

For the scheme Un,αn(·), similar notions are employed.
We can also study the convergence of more sophisticated numerical methods. For example, in [45],

in order to approximate (4.14), the following Runge–Kutta scheme was considered:

Y1 = Un,α(t) +
√
τnαAnUn,α(t),

Un,α(t+ τn)− Un,α(t) = −τnAnUn,α(t) + α∆w(t)AnUn,α(t)

+

√
τn

2

(
(∆w(t))2
√
τn

− 1

)
(αnAnY1 − αAnUn,α(t)). (4.17)

Thus, the solution can be written in the form

Un,α(t+ τn)

= (In − τnAn −
α2τn
2

A2n)
knΠkn

k=1(In + Z−1n α∆w(t)An + (Z−1n /2)α2∆w(t)2A2n)Un,α(0), (4.18)

where Zn =

(
In − τnAn −

α2τn
2

A2n

)
.

Theorem 4.8 ([45]). Let conditions (A) and (B) of Theorem 3.2 be satisfied. Assume that the stability
conditions (3.4) and τn‖A2n‖e

c‖An‖ = O(1) are fulfilled for some constant c > 0. Then for αn =
√
τn,

scheme (4.18) has the stable behavior in the following sense:

ηn := sup
{
E

[∥∥∥Un,αn(t)u
0
n − e(−tAn+αn(w(t)−w(0))An−

t
2
α2nA

2
n)u0n

∥∥∥] : ‖u0n‖ ≤ 1
}
→ 0,

and converges in the following sense:

E
[
‖Un,αn(t)u

0
n − pnu(t)‖

]
≤ C

√
τn‖A exp(−TA)u0‖+ ‖un,αn(t)− pnuαn(t)‖+ Cηn‖u

0
n‖, 0 < t ≤ T.

In the case of the well-posed problem{
duα(t) = Auα(t)dt+ αAuα(t)dw(t),

u(0) = u0,
(4.19)

where the operator A generates an analytic C0-semigroup, the semidiscrete and full-discretization schemes
do not need additional stability assumptions and the order of convergence will be defined just by the
compatibility property of the scheme. More precisely, the term eλt under the integral leads to the absolute
convergence of the integral independently of the behaviour of α on any compact set. For example, we
have the following assertion.
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Theorem 4.9 ([45]). Let the conditions (A) and (B′′) of Theorem 3.2 be satisfied. Assume that the
stability condition (3.4) is fulfilled for some constant C > 0. Then for any αn ∈ [0, α′], the scheme like
(4.18) has the stable behavior in the following sense:

sup
{
E

[∥∥∥Un,αn(t)u
0
n − e(tAn+αn(w(t)−w(0))An− t2α

2
nA2n)u0n

∥∥∥] : ‖u0n‖ ≤ 1
}
≤ τn,

and converges in the following sense:

E
[
‖Un,αn(t)u

0
n − pn exp(tA)u

0‖
]
≤ Cαn‖A exp(tA)u0‖+ ‖un,αn(t)− pnuαn(t)‖+ Cτn‖u

0
n‖, 0 < t ≤ T.

5. Coercive Inequalities

In a Banach space E, let us consider the following inhomogeneous Cauchy problem:

u′(t) = Au(t) + f(t), t ∈ [0, T ],

u(0) = u0,
(5.1)

where the operator A generates C0-semigroup and f(·) is some function from [0, T ] into E. Problem (5.1)
can be considered in various functional spaces. The most popular situations are the following settings:
the well-posedness in C([0, T ];E), Cα,0([0, T ];E), and Lp([0, T ];E) spaces (see [9,24,139,218]).

We say that problem (5.1) is well posed, say in C([0, T ];E), if, for any f(·) ∈ C([0, T ];E) and any
u0 ∈ D(A),

(i) problem (5.1) is uniquely solvable, i.e., there exists u(·) which satisfies the equation and boundary
condition (5.1), u(·) is continuously differentiable on [0, T ], u(t) ∈ D(A) for any t ∈ [0, T ] and Au(·) is
continuous on [0, T ];

(ii) the operator (f(·), u0)→ u(·) as an operator from C([0, T ];E) ×D(A) to C([0, T ];E) is contin-
uous.

In the case u0 ≡ 0, the coercive well-posedness in C([0, T ];E) means that ‖Au(·)‖C([0,T ];E) ≤
c‖f(·)‖C([0,T ];E). In general, the coercive well-posedness in the space Υ([0, T ];E) for problem (5.1) means
that it is well-posed in the space Υ([0, T ];E) and

‖u′(·)‖Υ([0,T ];E) + ‖Au(·)‖Υ([0,T ];E) ≤ C (‖f(·)‖Υ([0,T ];E) + ‖u
0‖F ),

where F is some subspace of E. For results of the coercive well-posedness see [9,24,139].
The semidiscrete approximation of (5.1) are the following Cauchy problems in Banach spaces En:

u′n(t) = Anun(t) + fn(t), t ∈ [0, T ],

un(0) = u0n,
(5.2)

with operators An which generate C0-semigroups, An and A are compatible, u0n → u0 and fn → f in
appropriate sense. Following Sec. 3, it is natural to assume that conditions (A) and (B1) are satisfied.

Here we are going to describe the discretization of (5.2) in time. The simplest difference scheme
(Rothe scheme) is

U
k
n − U

k−1
n

τn
= AnU

k
n + ϕk

n, k ∈
{
1, ...,

[
T

τn

]}
,

U
0
n = u0n,

(5.3)

where, for example, in the case of fn(·) ∈ C([0, T ];En), one can set ϕk
n = fn(kτn), k ∈ {1, ...,K},K =[

T

τn

]
, and in the case fn(·) ∈ L1([0, T ];En), one can set

ϕk
n =

1

τn

tk∫
tk−1

fn(s)ds, tk = kτn, k ∈ {1, ...,K}.
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5.1. Coercive inequality in Cτn([0, T ];En) spaces. Denote by Cτn([0, T ];En) the space of elements
ϕn = {ϕk

n}
K
k=0 such that ϕk

n ∈ En, k ∈ {0, ...,K}, with the norm ‖ϕn‖Cτn ([0,T ];En) = max0≤k≤K ‖ϕ
k
n‖En .

We recall that coercive well-posedness in C([0, T ];E) implies [24] that A generates an analytic C0-
semigroup.

Theorem 5.1 ([24]). Let condition (B1) be satisfied. Then problem (5.3) is stable in the space
Cτn([0, T ];En), i.e.,

‖Un‖Cτn ([0,T ];En) ≤ C
(
‖ϕn‖Cτn ([0,T ];En) + ‖u

0
n‖
)
.

Theorem 5.2 ([24]). Let condition (B1) be satisfied. Then problem (5.3) is almost coercive stable in the
space Cτn([0, T ];En), i.e.,

‖AnUn‖Cτn ([0,T ];En) ≤M
(
‖Anu

0
n‖En +min

(
log(1/τn), 1 +

∣∣∣ log ‖An‖
∣∣∣)‖ϕn‖Cτn ([0,T ];En)

)
.

It should be noted that if (5.1) is coercive well posed in the space C([0, T ];E), then [69] the operator
A should be bounded or the space E should contain a subspace isomorphic to c0. This means that problem
(5.3) is not coercive well posed in Cτn([0, T ];En) space in general.

For the explicit scheme

Uk
n − Uk−1

n

τ
= AnU

k−1
n + ϕk

n, k ∈ {1, ...,K},

U0n = u0n,

(5.4)

Theorem 5.2 can be reconstructed, but under a stability condition.

Theorem 5.3 ([24]). Let condition (B1) is satisfied, and let τn log

(
1

τn

)
‖An‖ ≤ ε for sufficiently small

ε > 0. Then problem (5.4) is almost coercive stable in the space Cτn([0, T ];En), i.e.,

‖AnUn‖Cτn ([0,T ];En) + ‖Un‖Cτn ([0,T ];En,1− 1
log 1τn

≤M

(
‖Anu

0
n‖En,1− 1

log 1τn

+min
(
log(1/τn), 1 +

∣∣∣ log ‖An‖
∣∣∣)‖ϕn‖Cτn ([0,T ];En)

)
,

where ‖un‖En,α =
( ∞∫
0

‖An exp(tAn)un‖
1
1−α

En
dt
)1−α

.

Remark 5.1. The space En,α with equivalent norm coincides with the real interpolation space
(En,D(An))1−1/p,p; see [139].

5.2. Coercive inequality in Cα,0
τn ([0, T ];En) spaces. Denote by C

α,0
τn ([0, T ];En), 0 < α < 1, the space

of the elements ϕn with the norm

‖ϕn‖Cα,0τn ([0,T ];En)
= max
0≤k≤K

‖ϕk
n‖En + max

1≤k<k+l≤K
‖ϕk+l

n − ϕk
n‖En(τnk)

α(lτn)
−α.

Theorem 5.4 ([183]). Let condition (B1) hold. Then the scheme (5.3) is coercive well-posed in

Cα,0
τn ([0, T ];En) with 0 < α < 1, i.e.,

‖AnUn‖Cα,0τn ([0,T ];En)
≤

M

α(1− α)

(
‖Anu

0
n‖En + ‖ϕn‖Cα,0τn ([0,T ];En)

)
.

Roughly speaking, assumption (B1) is necessary and sufficient for the coercive well-posedness in

Cα,0
τn ([0, T ];En) space.

20



5.3. Coercive inequality in Lp
τn([0, T ];En) spaces. Denote by Lp

τn([0, T ];En), 1 ≤ p < ∞, the space
of elements ϕn with the norm

‖ϕn‖Lpτn ([0,T ];En) =
( K∑

j=0

‖ϕk
n‖

p
En
τn

)1/p
.

Theorem 5.5 ([183]). Let condition (B1) hold. Let the difference scheme (5.3) be coercive well posed in
Lp0

τn([0, T ];En) for some 1 < p0 <∞. Then it is coercive well posed in Lp
τn([0, T ];En) for any 1 < p <∞

and

‖AnUn‖Lpτn ([0,T ];En) + max
0≤k≤K

‖U
k
n‖En,1−1/p ≤

Mp2

p− 1

(
‖ϕn‖Lpτn ([0,T ];En) + ‖U

0
n‖1−1/p

)
.

It should be noted that in contrast to the case of Cα,0-space, the analyticity of the semigroup exp(·A)
is not enough for the coercive well-posedness in Lp space [127], therefore, to state coercive well-posedness
in Lp, we need some additional assumptions.

Theorem 5.6 ([183]). Let 1 < p, q < ∞, 0 < α < 1, and let condition (B1) hold. Then the difference
scheme (5.3) is coercive well posed in Lp

τn([0, T ];En,α,q), i.e.,

‖AnUn‖Lpτn ([0,T ];En,α,q) + max
0≤k≤K

‖Uk
n‖En,1−1/p ≤

Mp2

(p− 1)α(1 − α)

(
‖ϕn‖Lpτn ([0,T ];En,α,q) + ‖U

0
n‖1−1/p

)
,

where En,α,q is the interpolation space (En,D(An))α,q with the norm

‖un‖En,α,q =
(∫ ∞
0
‖λαAn(λIn −An)

−1‖qEn
dλ

λ

)1/q
.

For the general Banach space E, we have the following results. Assume that A is the generator of the
analytic semigroup exp(tA), t ∈ R+, of linear bounded operators with an exponentially decreasing norm
as t→∞. This means that stability condition (B′′1 ) holds with ω′′ ≤ 0.

Theorem 5.7 ([23]). Let condition (B1) hold. Then the solution of difference scheme (5.3) is almost
coercive stable, i.e.,

‖AnUn‖Lpτn ([0,T ];En) ≤M
(
‖AnU

0
n‖En +min{log

1

τn
, 1 + | log ‖An‖B(En)|} ‖ϕn‖Lpτn ([0,T ];En)

)
holds for any p ≥ 1, where M does not depend on τn, u

0
n, and ϕn.

Of course, for schemes like

Uk
n − Uk−1

n

τn
= An

(
Uk

n + Uk−1
n

2

)
+ ϕk

n, n ∈ {1, ...,K},

U0n = u0n.

(5.5)

the coercive well-posedness can be considered.

Theorem 5.8 ([23]). Let condition (B1) hold. Then the solution of difference scheme (5.5) is almost
coercive stable, i.e., the estimate∥∥∥{An

U j
n + U j−1

n

2

}∥∥∥
Lpτn ([0,T ];En)

≤M
(
‖Anu

0
n‖En +min

{
log

1

τn
, 1 + | log ‖An‖En →En|

}
‖ϕn‖Lpτn ([0,T ];En)

)
holds for any p ≥ 1, where M does not depend on τn, u

0
n, and ϕn.

Theorem 5.9 ([23]). Let condition (B1) hold and condition (3.6) be satisfied. Then the solution of dif-
ference scheme (5.5) is almost coercive stable, i.e., the estimate

‖AnUn‖Lpτn ([0,T ];En) ≤M
(
‖Anu

0
n‖En +min

{
log

1

τn
, 1 + | log ‖An‖En →En|

}
‖ϕn‖Lpτn ([0,T ];En)

)
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holds for any p ≥ 1, where M does not depend on τn, u
0
n, and ϕn.

The necessary and sufficient conditions for the coercive well-posedness of problem (5.1) in Lp([0, T ];E)
were obtained in [101,221,222]. More precisely, a Banach space E has the UMD property, iff the Hilbert
transform

Hf(t) =
1

π
p.v.

∫ ∞
−∞

1

t− s
f(s)ds

extends to a bounded operator on Lp(R;E) for some (all) p ∈ (1,∞). It is well known, that all subspaces
and quotient spaces of Lq(Ω, µ) with 1 < q <∞ have this property.

The Poisson semigroup on L1(R) is not coercive well posed on the Lp(R, E) space if E is not an
UMD space (see [127]). Hence the assumptions on E to be an UMD space is necessary in some sense.

But it was an open problem whether every generator of an analytic semigroup on Lq(Ω, µ), 1 < q <∞,
provided the coercive well-posedness in Lp(R;E). Recently, Kalton and Lancien [103] gave a strong
negative answer to this question. If every bounded analytic semigroup on a Banach space E is such that
problem (5.1) is coercive well posed, then E is isomorphic to a Hilbert space.

If A generates a bounded analytic semigroup {exp(zA) : | arg(z)| ≤ δ}, on a Banach space E, then
the following three sets are bounded in the operator norm:

(i) {λ(λ−A)−1 : λ ∈ iR, λ �= 0};
(ii) {exp(tA), tA exp(tA) : t > 0};
(iii) {exp(zA) : | arg z| ≤ δ}.

In Hilbert spaces, this already implies the coercive well-posedness in Lp(R+;E), but only in Hilbert spaces
E. The additional assumption that we need in more general Banach spaces E is the R-boundedness.

A set T ⊂ B(E) is said to be R-bounded if there is a constant C <∞ such that for all Z1, . . . , Zk ∈ T
and x1, . . . , xk ∈ E, k ∈ N, ∫ 1

0

∥∥∥∥
k∑

j=0

rj(u)Zj(xj)

∥∥∥∥du ≤ C

∫ 1
0

∥∥∥∥
k∑

j=0

rj(u)xj

∥∥∥∥du, (5.6)

where {rj} is a sequence of independent symmetric {−1, 1}-valued random variables, e.g., the Rademacher
functions rj(t) = sign(sin(2jπt)) on [0, 1]. The smallest C such that (5.6) is fulfilled, is called the R-
boundedness constant of T and is denoted by R(T ).

Theorem 5.10 ([222]). Let A generate a bounded analytic semigroup exp(tA) on a UMD-space E. Then
problem (5.1) is coercive well posed in the space Lp(R+;E) if and only if one of the sets (i), (ii) or (iii)
above is R-bounded.

The interpretation of the discrete coercive inequality and a discrete semigroup defines the convolution

operator of the form Ăn

k∑
j=0

T k−j
n Qnϕnτn with some bounded operator Qn ∈ B(En), which usually has a

smoothness property as it is clear from the proofs of Theorems 5.7 and 5.8. Here, Tn(τn)
k is a discrete

semigroup, say, as in Sec. 3.1.
The boundedeness of the convolution operator in Lp

τn(Z+;En) space implies the discrete coercive
well-posedness in Lp

τn(Z+;En).
Also, in this section, we assume that Banach spaces En satisfy the collective UMD-property, i.e., we

assume that the Hilbert transforms

Hnfn(t) =
1

π
p.v.

∫ ∞
−∞

1

t− s
fn(s)ds

extend to a bounded operators on Lp(R;En) for some (all) p ∈ (1,∞) such that all of them are bounded
by a constant which does not depend on n. This assumption holds for example if all En can be embedded
in a fixed space Lp(Ω) with 1 < p <∞.
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Definition 5.1. A discrete semigroup Tn(·) with a generator Ăn generates the coercive well-posedness on

Lp
τn(Z+;En) space if the corresponding convolution operator ϕn "→

{
Ăn

k∑
j=0

T k−j
n Qnϕ

j
nτn

}
is continuous

on the Lp
τn(Z+;En) space.

Theorem 5.11 ([23]). Assume that for convolution operator

ϕn "→
{
Ăn

k∑
j=0

T k−j
n Qnϕ

j
nτn

}
,

the following conditions hold:
10 the set {Ăn(λ− Tn)

−1Qnτn : |λ| = 1, λ �= 1, λ �= −1} is R-bounded;

20 the set {(λ− 1)(λ+ 1)Ăn(λ− Tn)
−2Qnτn : |λ| = 1, λ �= 1, λ �= −1} is R-bounded.

Then the discrete semigroup Tn(·) generates the coercive well-posedness on the Lp
τn(Z+;En) space.

Theorem 5.12 ([23]). Let En be UMD Banach spaces. Also, assume that the set

{λ(λ−An)
−1 : λ ∈ iR, λ �= 0}

is R-bounded with the R-boundedness constant independent of n. Then the solution of difference scheme
(5.3) is coercive stable, i.e.,

‖ĂnUn‖Lpτn (Z+;En) ≤M‖ϕn‖Lpτn (Z+;En) (5.7)

holds for any p ≥ 1, where M is independent of τn, u
0
n, and ϕn.

Remark 5.2. It should be noted that Theorem 3.2 can be reformulated in terms of R-boundedness
with the change of condition (B1) by the following condition: there is a 0 < θ < π/2 such that the
set {λ(λ − An)

−1 : λ ∈ Σ(θ + π/2)} is R-bounded with the R-boundedness constant independent of n.
Condition (C1) can be written, due to [222, Theorem 4.2], in the following form: exp(tAn) → exp(tA)
converges for any t ∈ R and there is 0 < θ < π/2 such that the set {exp(zAn) : z ∈ Σ(θ)} is R-bounded
with the R-boundedness constant independent of n. Therefore, one of our assumption in Theorems 5.12
and 5.13 is in some sense condition (B1) changed by the R-boundedness condition.

Theorem 5.13 ([23]). Let En be UMD Banach spaces. Also, assume that the set {λ(λ −A)−1: λ ∈ iR,
λ �= 0} is R-bounded with the R-boundedness constant independent of n. Then the solution of difference
scheme (5.5) is coercive stable, i.e.,∥∥∥∥

{
Ăn

Uk
n + Uk−1

n

2

}∥∥∥∥
L
p
τn ([0,T ];En)

≤M‖ϕn‖Lpτn ([0,T ];En) (5.8)

holds for any p ≥ 1, where M does not depend on τn, u
0
n, and ϕn.

Remark 5.3. Analyzing the proofs of Theorems 5.12 and 5.13, it is easy to see that one can set Ăn = An

in statements (5.7) and (5.8). Moreover, statement (5.8) can be written in the form

‖ĂnUn‖Lpτn ([0,T ];En) ≤M‖ϕn‖Lpτn ([0,T ];En).

The proof of this fact is based on the relation Ăn = An(In −
τn
2
An)

−1.

It is possible to consider a more general Padé difference scheme [24] for p = q − 1 or p = q − 2. In
this case, the difference scheme is written in the form

Uk
n − Uk−1

n

τn
= (ĂnUn)

k−1 + ϕp,q,k
n , U0n = u0n, 1 ≤ k ≤ K. (5.9)
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where (ĂnUn)
k =

(
Rp,q(τnAn)− I

τn
Un

)k−1

and ‖ϕk
n − ϕp,q,k

n ‖En ≤ Mτp+q
n . To formulate the coercive

statements of Secs. 5.1–5.3, we just need to change the operator An by Ăn. We know from Theorem 3.16
that under condition (B1) with p = q, the Padé approximation is stable, but, in general, it is not coercive
stable. To obtain the coercive inequality, we need condition (3.6). Spaces where the problem considered
can also be very different [24].

5.4. Coercive inequality in Bτn([0, T ];C
θ
h(Ωh)) ∩ Ch([0, T ];Ch(Ω̄h)). From the point of view of the

numerical analysis, it is very interesting to consider problem (5.1) in the space Υ([0, T ];E) such that E
is smoother than C(Ω) (elements of such a space can easily be well approximated) and Υ([0, T ];E) is like
C([0, T ];E) or the space of bounded functions. An interesting fact is that such a situation is actually
possible at least for a strongly elliptic operator of order 2 with coefficients of class Cθ(Ω). Since operator
(pnv)i = v(ih) is very concrete in such space E, i.e., it takes values in the grid points, we omit pn in the
notation of this section.

Theorem 5.14 ([39]). Let Ω be an open bounded subset of Rd lying to one side of its topological boundary
∂Ω, which is a submanifold of Rd of dimension d− 1 and class C2+θ, for some θ ∈ (0, 2) \ {1}. Let

A = A(x,Dx) =
∑
|α|≤2

aα(x)D
α
x

be a strongly elliptic operator of order two (thus, Re
∑
|α|=2

aα(x)ξ
α ≥ ν|ξ|2 for some ν > 0 and for any

(x, ξ) ∈ Ω× Rd) with coefficients of class Cθ(Ω). Then there exist µ ≥ 0 and φ0 ∈
(π
2
, π
)

such that for

any λ ∈ C with |λ| ≥ µ and |Arg λ| ≤ φ0, the problem

λv −Av = y,

γ0v = 0,

has a unique solution v belonging to C2+θ(Ω), for any y ∈ Cθ(Ω) and for a certain M > 0,

|λ|1+
θ
2 ‖v‖C(Ω) + |λ| ‖v‖Cθ(Ω) + ‖v‖C2+θ(Ω) ≤M

(
‖y‖Cθ(Ω) + |λ|

θ
2 ‖γ0y‖C(∂Ω)

)
, (5.10)

where γ0 is the trace operator on ∂Ω.

It is clear from (5.10) that the operator A does not generate a C0-semigroup in E = Cθ(Ω) space in
general, but, following, say, [139], one can construct a semigroup exp(tA), t ≥ 0, which is analytic.

Let I = Z, and let E be a Banach space with norm ‖ · ‖. For a grid function U : I → E, writing Uj

or (U)j instead of U(j) for any j ∈ I, we set

B(I;E) := {U : I → E : sup
j∈I

‖Uj‖ < +∞}, ‖U‖B(I;E) := sup
j∈I

‖Uj‖.

It is easily seen that B(I;E) is a Banach space with the norm ‖ · ‖B(I;E). If the set I is some interval,
say, I = (a,∞), we denote by B(I;E) the set of all bounded functions from I into E.

For the grid function U : I → E and h > 0, we define the operator ∂h by formula

(∂hU)j := h−1(Uj+1 − Uj).

For any m ∈ Z we set (∂m
h U)j := h−m

m∑
i=0

(
m

i

)
(−1)m−iUj+i. If U ∈ B(I;E), we set

‖U‖Cmh (I;E) := max
{
‖∂r

hU‖B(I;E) : 0 ≤ r ≤ m
}
.
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Finally, let θ ∈ (0, 1). We define

[U ]Cθh(I;E)
:= sup

{(
(k − j)h

)−θ
‖Uk − Uj‖ : j, k ∈ I, j < k

}
,

and if m ∈ N0,

‖U‖
Cm+θh (I;E) := max

{
‖U‖Cmh (I;E), [∂

m
h U ]Cθh(I,E)

}
.

In the same context, we denote by B(I;E) the space C0h(I;E). If E = C, we write simply B(I) or C0h(I).

Let f ∈ B(N;E). We denote by f̃ the extension of f to N0 such that f̃0 = 0. For a nonnegative real
number ω, we define

‖f‖Cωh,0(N;E) := ‖f̃‖Cωh (N0;E). (5.11)

Now let L > 0, n ∈ N, n ≥ 3, and let h =
L

n
. For j ∈ I := {1, ..., n − 1}, we are given complex

numbers aj, bj , b
′
j , and cj satisfying the following conditions (ι):

(ι1) there exists ν > 0 such that Re(aj) ≥ ν for every j ∈ I;

(ι2) max
{
|aj |, |bj |, |b′j |, |cj |

}
≤ Q for every j ∈ I with Q > ν;

(ι3) there exists ω : [0, L] → [0,+∞) such that ω(0) = 0 and ω is continuous at 0 such that for
j, k ∈ I with j ≤ k,

|ak − aj | ≤ ω
(
(k − j)h

)
.

For λ ∈ C, we study the following problem:

λUj − aj(∂
2
hU)j−1 − bj(∂hU)j − b′j(∂hU)j−1 − cjUj = fj for j = 1, ..., n − 1,

U0 = Un = 0.
(5.12)

For this purpose, we set I := {0, 1, ..., n − 1, n} and for U ∈ B(I;E), define

Ũj =

{
Uj if j ∈ I,

0 if j ∈ {0, n}.

We introduce the operator Ah in B(I;E) defined by

(AhU)j := aj(∂
2
hŨ)j−1 + bj(∂hŨ)j + b′j(∂hŨ)j−1 + cjŨj for j ∈ I. (5.13)

Further, we assume that
(ιθ1) there exists ν > 0 such that Re(aj) ≥ ν for every j ∈ I;

(ιθ2) max
{
‖a‖Cθh(I)

, ‖b‖Cθh(I)
, ‖b′‖Cθh(I)

, ‖b‖Cθh(I)

}
≤ Q with Q > ν.

Proposition 5.1 ([95]). Assume that assumptions (ιθ) are satisfied for some θ ∈ (0, 2) \ {1}. Fix φ0 ∈[
0, π − arccos

( ν
Q

))
. Then there exists µ0 > 0 such that {λ ∈ C : |λ| ≥ µ0, |Arg(λ)| ≤ φ0} ⊆ ρ(Ah),

where Ah is the operator defined in (5.13). Moreover, for every r ∈ [0, 2] there exists c > 0 depending only
on L, ν,Q, and r such that for every f ∈ B(I;E) and any F ∈ B(I;E) with F |I = f , one has

‖(λ−Ah)
−1f‖

Cθ+rh,0 (I;E)
≤ c|λ|

r
2
−1
(
‖F‖Cθh(I;E)

+ |λ|
θ
2 max{‖F0‖, ‖Fn‖}

)
.

Let us consider the following mixed Cauchy–Dirichlet parabolic problem:

∂u

∂t
(t, x) = Au(t, x) + f(t, x), t ∈ [0, T ], x ∈ [0, L],

u(t, x′) = 0, t ∈ [0, T ], x′ ∈ {0, L},

u(0, x) = 0, x ∈ [0, L],

(5.14)
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where A is a second-order differential operator and L > 0. We say that problem (5.14) has a strict solution
if there exists a continuous function u(t, x) having the first derivative with respect to t and derivatives of
order less than or equal to 2 with respect to x which are continuous up to boundary of [0, T ]× [0, L], i.e.

u ∈ C1
(
[0, T ];C(Ω)

)
∩ C

(
[0, T ];C2(Ω)

)
and the equations in (5.14) are satisfied.

Theorem 5.15 ([91]). Consider problem (5.14) under the following assumptions:
(I) T and L are positive real numbers;

(II) θ ∈ (0, 1) \

{
1

2

}
;

(III)

Au(x) = a(x)
∂2u

∂x2
(t, x) + b(x)

∂u

∂x
(t, x) + c(x)u(t, x),

with a, b, c ∈ C2θ([0, L]);
(IV) a is real-valued and min a = ν > 0;

(V) f ∈ C([0, T ] × [0, L]), t → f(t, ·) ∈ B
(
[0, T ];C2θ([0, L])

)
; t → f(t, 0) and t → f(t, L) belong to

Cθ([0, T ]); f(0, 0) = f(0, L) = 0.
Then there exists a unique strict solution u(·) of problem (5.14). Such a solution belongs to

B
(
[0, T ];C2+2θ([0, L])

)
and

∂u

∂t
∈ B

(
[0, T ];C2θ([0, L]

)
.

Now let I be a set which can depend on a positive parameter h and the Banach space Xh = B(I).
Next, we introduce a linear operator Ah in Xh depending on h. In each case, ρ(Ah) contains

{λ ∈ C \ {0} : |λ| ≥ R and |Arg(λ)| ≤ φ0},

where R > 0 and φ0 ∈ (
π

2
, π), and there exists M > 0 such that

‖(λ−Ah)
−1‖L(Xh) ≤M |λ|−1

for λ in the specified subset of C. Here, R,φ0, and M are independent of h. Then we consider another
set Ĩ such that I ⊆ Ĩ; we set X̃h := B(Ĩ). We define an extension operator Eh from Xh to X̃h : in all our
concrete cases, this is the extension with zero. Next, for θ ∈ (0, 1), we introduce the norms ‖ · ‖2θ,h and

‖ · ‖2+2θ,h in X̃h. The first of these norms is connected with ‖ · ‖X and the operator Ah by the following
property: there exist two positive constants c1 and c2 independent of h such that for every U ∈ Xh,

c1‖EhU‖2θ,h ≤ ‖U‖(Xh,D(Ah))θ ≤ c2‖EhU‖2θ,h.

Then, for every, h we consider the restriction operator Rh ∈ L(X̃h,Xh) such that RhEh = IXh . Let us

also introduce a seminorm ph in X̃h: in concrete cases, we have ph(U) = ‖U |Ĩ\I‖B(Ĩ\I). We assume that

if |λ| ≥ R and |Arg(λ)| ≤ φ0, for every G ∈ X̃h, then

|λ| ‖Eh(λ−Ah)
−1RhG‖2θ,h + ‖Eh(λ−Ah)

−1RhG‖2+2θ,h ≤M
(
‖G‖2θ,h + |λ|

θph(G)
)
.

Another inequality we impose is the following. If |λ| ≥ R, |Arg(λ)| ≤ φ0 and G ∈ X̃h, then

‖Ah(λ−Ah)
−1RhG‖Xh ≤M |λ|−θ

(
‖G‖2θ,h + |λ|

θph(G)
)
.

Such an inequality can be easily deduced in each of our examples. In the formulation below, we remove
the parameter h. In the case of the backward Euler scheme (5.3), we have

Theorem 5.16 ([95]). Let X and X̃ be Banach spaces with norms ‖ · ‖X and ‖ · ‖X̃ , respectively, and let

A ∈ B(X), E ∈ B(X, X̃), and R ∈ B(X̃,X) be such that RE = IX . Assume, moreover, that θ ∈ (0, 1)
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and ‖ · ‖2θ and ‖ · ‖2+2θ are norms in X̃, while p is a seminorm in the same space. Finally, assume that

there exist R > 0, φ0 ∈
(π
2
, π
)
, M > 0 such that the following conditions are satisfied:

(a) {λ ∈ C : |λ| ≥ R, |Arg(λ)| ≤ φ0} ⊆ ρ(A) and, for λ in this set,

‖(λ−A)−1‖B(X) ≤M(1 + |λ|)−1;

(b) for every F ∈ X,

‖EF‖2θ ≤M‖F‖(X,D(A))θ ;

(c) for every V ∈ X̃, λ ∈ C with |λ| ≥ R and |Arg(λ)| ≤ φ0,

(1 + |λ|)−1‖E(λ −A)−1RV ‖2θ + ‖E(λ−A)−1RV ‖2+2θ

+(1 + |λ|)θ‖A(λ−A)−1RV ‖X ≤M
(
‖V ‖2θ + (1 + |λ|)θp(V )

)
;

(d) p(V ) ≤ ‖V ‖2θ for every V ∈ X̃ and p(EF ) = 0 for every F ∈ X;

(e) ‖RV ‖X ≤ ‖V ‖2θ for every V ∈ X̃.

Let T > 0, K ∈ N,K ≥ 2, and τ =
T

K
. Assume that τR < 1.

Let G ∈ B({0, 1, ...,K}; X̃) be such that G0 = 0; consider problem (5.3) with ϕk = RGk for k =
1, ...,K and U0 = 0. Then, for U ∈ B({0, 1, ...,K};X) which solves (5.3), one has

‖EU
k
‖2+2θ ≤ c

(
max
0≤k≤K

‖Gk‖2θ + max
0≤k1<k2≤K

((k2 − k1)τ)
−θp(Gk2 −Gk1)

)
, (5.15)

for k = 0, 1, ...,K, where c is a positive constant depending only on θ, R, φ0, M , and T and is independent
of τn and G.

We now consider the Crank–Nicolson scheme: we replace (5.3) by (5.5). Theorem 5.16 has the
following analog.

Theorem 5.17 ([94]). Assume that the assumptions of Theorem 5.16 are satisfied and, moreover,
(f) ‖τA‖B(X) ≤ S with some S > 0;
(g) if |λ| ≥ 2S, then

‖E(λ− τA)−1RV ‖2θ ≤M
(
‖V ‖2θ + τ−θp(V )

)
for every V ∈ X̃;

(h) ‖ERV ‖2θ ≤M
(
‖V ‖2θ + τ−θp(V )

)
for every V ∈ X̃;

(i) 2τR < 1.

Let G ∈ B({0, 1, ...,K}; X̃) be such that G0 = 0; consider problem (5.5) with ϕk = RGk for k =

1, ...,K and U0 = 0. If U ∈ B
(
{0, 1, ...,K};X

)
solves (5.5) for k = 0, 1, ...,K, then

‖EUk‖2+2θ ≤ c
(

max
0≤k≤K

‖Gk‖2θ + max
0≤k1<k2≤K

((k2 − k1)τ)
−θp(Gk2 −Gk1)

)
, (5.16)

where c is a positive constant depending only on θ,R, φ0,M, S, and T and is independent of τn and G.

An application of Theorems 5.16 and 5.17 to the discretization of problem (5.14) is the following.

Let K,n ∈ N. We set τ :=
T

K
and h :=

L

n
. We assume that K ≥ 2 and n ≥ 3. For j = 0, 1, ..., n, we set

aj := a(jh), bj =
1

2
b(jh), cj := c(jh), Nn−1 := {1, ..., n − 1}, Nn := {0, 1, ..., n − 1, n}, and

X := B(Nn−1), X̃ := B(Nn). (5.17)
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If V ∈ X as before, for i ∈ Nn−1, we set

(AhV )i := ai
Ṽi+1 − 2Ṽi + Ṽi+1

h2
+ bi

Ṽi+1 − Ṽi−1

2h
+ ciṼi, (5.18)

where

Ṽi = (EV )i =

{
Vi if 1 ≤ i ≤ n− 1,

0 if i ∈ {0, n}.

Next, we define

R ∈ B(X̃,X),RV := V |Nn−1 (5.19)

for every V ∈ X̃. Then, again for V ∈ X̃ and θ ∈

(
0,
1

2

)
, we set

‖V ‖2θ := max{‖V ‖X̃ , max
0≤i1<i2≤n

((i2 − i1)h)
−2θ|Vi2 − Vi1 |}, (5.20)

‖V ‖2+2θ := max{‖V ‖X̃ , max
0≤i≤n−1

|(∂hV )i|, max
0≤i≤n−2

|(∂2hV )i|,

max
0≤i1<i2≤n−2

((i2 − i1)h)
−2θ |(∂2hV )i2 − (∂2hV )i1 |}, (5.21)

with

(∂hV )i :=
Vi+1 − Vi

h
for 0 ≤ i ≤ n− 1, (∂2hV )i :=

Vi+2 − 2Vi+1 + Vi

h
for 0 ≤ i ≤ n− 2,

p(V ) := max{|V0|, |Vn|}. (5.22)

One has the following result.

Theorem 5.18 ([94]). With the notation (5.17), (5.18), (5.19) and (5.20), the assumptions (a)–(e) of
Theorem 5.16 are satisfied, with R,φ0,M independent of h. If we impose the further condition

τn ≤ αh2, (5.23)

the same also holds for assumptions (f)–(h) of Theorem 5.17 (even with S independent of n).

As a consequence, we have the following theorem.

Theorem 5.19 ([95]). Consider the problem (5.14) under the assumptions of Theorem 5.15. With the
notation (5.17), (5.18), (5.19), and (5.20), set Gk

j := f(kτn, jh) for k ∈ {1, ...,K}, j = 0, ..., n. Set

ϕk := RGk and denote by G0 the zero in B(Nn).
Then if τn is sufficiently small, the problem

Ũk
j − Ũk−1

j

τn
= ai

Ũk
i+1 − 2Ũk

i + Ũk
i−1

h2
+ bi

Ũk
i+1 − Ũk

i−1

2h
+ ciŨ

k
i + ϕk

j ,

Ũ0j = 0,

(5.24)

for j ∈ 1, . . . , n− 1, k ∈ {1, ...,K} has a unique solution such that

‖Ũk‖
C2+2θh (Nn)

≤ c
(
‖f‖B([0,T ];C2θ([0,L])) +max{‖f(·, 0)‖Cθ ([0,T ]), ‖f(·, L)‖Cθ([0,T ])}

)
(5.25)

with c independent of h and τn.

An analogous result holds for the Crank–Nicholson scheme (5.5). Then we setGk
j := f

((
k−

1

2

)
τn, jh

)
under the further condition (5.23).
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Remark 5.4. It follows from Theorem 5.18 that, for scheme (5.5) with u0n = 0 and under condition (5.23)

‖AhU‖C2θh (Nn−1)
≤ c
(
‖f‖B([0,T ];C2θ([0,L])) +max{‖fn(·, 0)‖Cθ([0,T ]), ‖f(·, L)‖Cθ([0,T ])}

)
, (5.26)

with c independent of h and τn. In the quoted papers Theorems 5.16 and 5.17 are also applied to the
discretization of the heat equation in a square.

A counterexample in [94] and [93] shows that condition (5.23) cannot be removed in general. Finally,
estimates of the order of convergence are given in [93].

The coercive inequalities and their discrete analogs in the spaces C and Lp for elliptic problems of
the form, e.g.,

u′′(t) = Au(t) + f(t), u(0) = 0, u(T ) = uT ,

have been considered in [20,21].

6. Approximations of Semilinear Equations

In a Banach space E, let us consider the semilinear Cauchy problem

u′(t) = Au(t) + f(t, u(t)), u(0) = u0, (6.1)

with the operator A, generating an analytic C0-semigroup of type ω(A) < 0, where the function f is
smooth enough. The existence and uniqueness of solution of problem (6.1) have been discussed, e.g., in
[9,31,96,98,139].

6.1. Approximations of Cauchy problem. By a semidiscrete approximation of problem (6.1), we
mean the following Cauchy problems in the Banach spaces En:

u′n(t) = Anun(t) + fn(t, un(t)), un(0) = u0n, (6.2)

where the operators An generate analytic semigroups in En, An and A are compatible, the functions fn

approximate f and u0n → u0.
Let Ω be an open set in a Banach space F , and let B : Ω̄ → F be a compact operator having no

fixed points on the boundary of Ω. Then for the vector field F(x) = x− Bx, the rotation γ(I −B; ∂Ω) is
defined; it is an integer-valued characteristic of this field. Let x∗ be a unique isolated fixed point of the
operator B in the ball Sr0 of radius r0 centered at x∗. Then γ(I−B; ∂Sr) = γ(I−B; ∂Sr0) for 0 < r ≤ r0,
and this common value of the rotations is called the index of the fixed point x∗ and is denoted by indx∗.

Theorem 6.1 ([166]). Assume that conditions (A) and (B1) hold and compact resolvents (λI −
A)−1, (λIn − An)

−1 converge: (λIn − An)
−1 → (λI − A)−1 compactly for some λ ∈ ρ(A) and u0n → u0.

Assume that
(i) the functions fn and f are bounded and sufficiently smooth, so that there exists a unique mild

solution u∗(·) of the problem (6.1) on [0, T ] (in this situation indu∗(·) = 1);
(ii) fn(t, xn)→ f(t, x) uniformly with respect to t ∈ [0, T ] as xn → x;
(iii) the space E is separable.
Then for almost all n, problems (6.2) have mild solutions u∗n(t), t ∈ [0, T ], in a neighbourhood of

pnu
∗(·). Each sequence {u∗n(t)} is P-compact and u∗n(t)→ u∗(t) uniformly with respect to t ∈ [0, T ].

Let us consider the time discretization with respect to the explicit difference scheme:

Un(t+ τn)− Un(t)

τn
= AnUn(t) + fn(t, Un(t)), Un(0) = u0n, t = kτn, k = {0, · · · ,K}. (6.3)

Theorem 6.2 ([166]). Assume that the conditions of Theorem 6.1 and condition (3.6) are satisfied. Then
the functions Un(t) from (6.3) give an approximate mild solution u∗(·) of problem (6.1) and, moreover,
Un(t)→ u∗(t) uniformly with respect to t ∈ [0, T ].

Let us define the operator -(un)(t) = un(t)−
∫ t
0 exp((t− s)An)f(s, un(s))ds.
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Remark 6.1. If we assume that the conditions of Theorem 6.1 hold and the functions f(·) and
fn(·) have Fréchet derivatives in some balls containing the solutions u∗ and u∗n and, moreover, as-
sume that f ′nu(t, pnu

∗(t)) are uniformly continuous with respect to the first and second arguments and
f ′nun (t, un(t)) → f ′u(t, u

∗(t)) uniformly with respect to t ∈ [0, T ] for un → u∗, then [166] for almost all n

the problems (6.2) have mild solutions u∗n(t), t ∈ [0, T ], in the neighbourhood of pnu
∗(·). Each sequence

{u∗n(·)} is P-compact and u∗n(t)→ u∗(t) uniformly with respect to t ∈ [0, T ] and, moreover, for sufficiently
large n ≥ n0 and some T ∗ ≤ T we have

c1εn(u
∗, u0n) ≤ ‖u

∗
n − pnu

∗‖Fn ≤ c2εn(u
∗, u0n),

where the constants c1 and c2 are independent of n, Fn = C([0, T ];En), and

εn(u
∗, u0n) = max

t∈[0,T ∗]
‖-(pnu

∗)(t)− exp(tAn)u
0
n‖En .

Let Un(t) = (In + τnAn)
k and .n(un)(t) = un(t)−

k−1∑
l=1

Un((k − l)τn)fn(lτn, un(lτn))τn.

Remark 6.2. If we assume that the conditions of Theorem 6.2 hold and the functions f(·) and fn(·)
have Fréchet derivatives in some balls containing the solutions u∗(·) and u∗n(·) and, moreover, as-
sume that f ′nun (t, pnu

∗(t)) are uniformly continuous with respect to the first and second arguments and

f ′nun (t, un(t)) → f ′u(t, u
∗(t)) uniformly with respect to t ∈ [0, T ] as un → u∗ and condition (3.6) holds,

then [166] the functions Un(t) from (6.3) give an approximate mild solution of the problem (6.1) and
U∗n(t) → u∗(t) uniformly with respect to t ∈ [0, T ] and, moreover, for sufficiently large n ≥ n0 and some
T ∗ ≤ T , we have

c1εn(u
∗, u0n) ≤ ‖U

∗
n − pnu

∗‖F τnn ≤ c2εn(u
∗, u0n),

where the constants c1 and c2 are independent of n, F τn
n = {un(kτn) : max

0≤kτn≤T
‖un(kτn)‖En < ∞} and

εn(u
∗, u0n) = max

t∈[0,T ∗]
‖.n(pnu

∗)(t)− Un(t)u
0
n‖En .

Schemes which have higher order of convergence than (6.3) are considered in [146,166]. The Runge–
Kutta methods for semilinear equations were considered in [79], [135–137,146,149].

6.2. Approximation of periodic problem. In a Banach space E, let us consider the semilinear T -
periodic problem

v′(t) = Av(t) + f
(
t, v(t)

)
, v(t) = v(T + t), t ∈ R+, (6.4)

with the operator A, generating an analytic compact C0-semigroup, where the function f is smooth
enough and f(t, x) = f(t + T, x) for any x ∈ E and t ∈ R+. Let u(·;u0) be a solution of the Cauchy
problem (6.1) with the initial data u(0;u0) = u0. This function u(·;u0) is also a mild solution, i.e., it
satisfies the integral equation

u(t) = exp(tA)u0 +

∫ t

0
exp

(
(t− s)A

)
f
(
s, u(s)

)
ds, t ∈ R+. (6.5)

Then the shift operator K(u0) = u(T ;u0) can be defined, and it maps E into E. If u(·;x∗) is a periodic
solution of (6.1), then x∗ is a zero of the compact vector field defined by I −K, i.e., K(x∗) = x∗.

Remark 6.3. We assume here that the operator
(
I − exp(TA)

)−1
exists and is bounded. Meanwhile,

it is just enough to assume that
(
I − exp(tA)

)−1
∈ B(E) holds for t ≥ t0 with some t0 > 0. This

assumption is not restrictive, since, without loss of generality, we can change A by A − ωI and obtain

‖ exp
(
t(A− ω)

)
‖ ≤Me−δt for δ > 0, t ≥ 0. It follows [29] that

(
I − exp(tA)

)−1
∈ B(E) for any t > 0.
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Remark 6.4. We say that function f is smooth enough in the sense that it is at least continuous in both
arguments, sup

t∈[0,T ],‖x‖≤c1

‖f(t, x)‖ ≤ C2 and such that there exists the global mild solution of the problem

u′(t) = Au(t) + f
(
t, u(t)

)
, u(0) = u0, t ∈ R+.

Definition 6.1. The solution u(·) of the Cauchy problem (6.1) is said to be stable in the Lyapunov sense
if for any ε > 0 there is δ > 0 such that the inequality ‖u(0)− ũ(0)‖ ≤ δ implies max

0≤t<∞
‖u(t)− ũ(t)‖ ≤ ε,

where ũ(·) is a mild solution of (6.1) with the initial value ũ(0).

Definition 6.2. The solution u(·) of the Cauchy problem (6.1) is said to be uniformly asymptotically
stable at the point u(0) if it is stable in the Lyapunov sense, and for any mild solution ũ(·) of (6.1) with
‖u(0) − ũ(0)‖ ≤ δ, it follows that limt→∞ ‖u(t) − ũ(t)‖ = 0 uniformly in ũ(·) ∈ B(u(0); δ), i.e., there
is a function φu(0),δ(·) such that ‖u

(
t;u(0)

)
− u

(
t; ũ(0)

)
‖ ≤ φu(0),δ(t) with φu(0),δ(t) → 0 as t → ∞ and

‖u(0) − ũ(0)‖ ≤ δ.

Constructive conditions on the operator A and f ensuring that the equation u′(t) = Au(t)+ f(u(t)),
u(0) = u0 is asymptotically k-dimensional are given in [172, 173]. They concern with the location of
eigenvalues of A, i.e., λk+1 − λk > 2L, λk+1 > L.

Theorem 6.3 ([38]). Assume that conditions (A) and (B′′) hold and compact resolvents (λI −
A)−1, (λIn −An)

−1 converge: (λIn −An)
−1 → (λI −A)−1 compactly for some λ ∈ ρ(A). Assume that

(i) the functions f and fn are sufficiently smooth, so that there exists an isolated mild solution v∗(·)
of the periodic problem (6.4) with v∗(0) = x∗ such that the Cauchy problem (6.1) with u(0) = x∗ has a
uniformly asymptotically stable isolated solution at the point x∗ (in this case, ind v∗(·) = 1);

(ii) fn(t, xn)→ f(t, x) uniformly with respect to t ∈ [0, T ] as xn → x;
(iii) the space E is separable.
Then, for almost all n, the problems

v′n(t) = Anvn(t) + fn

(
t, vn(t)

)
, vn(t) = vn(t+ T ), t ∈ R+, (6.6)

have periodic mild solutions v∗n(t), t ∈ [0, T ], in the neighbourhood of pnv
∗(·), where v∗(·) is a mild periodic

solution of (6.4) with v∗(0) = x∗. Each sequence {v∗n(·)} is P-compact and v∗n(t) → v∗(t) uniformly with
respect to t ∈ [0, T ].

We say that a fixed point x∗ of the operator K in Banach lattice E is stable from the above [98] if
given ε > 0, there is δ > 0 such that ‖Kkx− x∗‖ ≤ ε for all k ∈ N if x∗ � x and ‖x− x∗‖ ≤ δ. Using this
notion, we can reformulate Theorem 6.3 for positive semigroups due to the result from [62].

Theorem 6.4. Let the operators An and A from the problems (6.4) and (6.6) be compatible and let E
and En be order-one spaces and en ∈ D(An) ∩ intE+n . Assume that the operators An have the POD
property and Anen � 0 for sufficiently large n and compact resolvents (λI −A)−1, (λIn −An)

−1 converge
(λIn −An)

−1 → (λI −A)−1 compactly for some λ ∈ ρ(A). Assume that
(i) the functions f and fn are sufficiently smooth, bounded and positive, so that there exists a mild

solution u∗(·) of the Cauchy problem (6.3) such that the element u∗(0) = x∗ is a stable from above and
fixed points of operator K with x∗ ≺ y,Ky � y (in this situation indx∗ = 1);

(ii) fn(t, xn)→ f(t, x) uniformly with respect to t ∈ [0, T ] as xn → x;
(iii) the space E is separable.
Then for almost all n, problems (6.6) have periodic mild solutions v∗n(t), t ∈ [0, T ] in the neighbourhood

of pnv
∗(·), where v∗(·) is any mild periodic solution of (6.4) stable from above. Each sequence {v∗n(·)} is

P-compact and v∗n(t)→ v∗(t) uniformly with respect to t ∈ [0, T ].

Remark 6.5. The technique which is used here can be applied to the case of condensing operators [3].
For example, the resolvent of ∆ in L2(Rd) is condensing, but it is not compact.
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In [120], the qualitative behavior of spatially semidiscrete finite-element solutions of a semilinear
parabolic problem near an unstable hyperbolic equilibrium was studied.

The shadowing approach to the study of the long-time behavior of numerical approximations of
semilinear parabolic equations was studied in [119].

Many results contained in this survey can be reformulated for the second-order equation u′′ = Au(t)
with the operator A generating a C0-cosine operator function.
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107. J. Kisyński, “A proof of the Trotter–Kato theorem on approximation of semigroups,” Colloq. Math.,

18, 181–184 (1967).
108. Y. Kobayashi, “Difference approximation of Cauchy problems for quasi-dissipative operators and

generation of nonlinear semigroups,” J. Math. Soc. Jap., 27, No. 4, 640–665 (1975).
109. Y. Kobayashi, “Difference approximation of evolution equations and generation of nonlinear semi-

groups,” Proc. Jap. Acad., 51, No. 6, 406–410 (1975).
110. S. G. Krein, Linear Differential Equations in Banach Space, American Mathematical Society, Prov-

idence, R.I., (1971).
111. P. Kunstmann and L. Weis, “Perturbation theorems for maximal regularity,” (in press).
112. P.Ch. Kunstmann, Abstrakte Cauchy probleme und Distributionshalbgruppen, Dissertation, Univ.

Kiel (1995).
113. P.Ch. Kunstmann, “Regularization of semigroups that are strongly continuous for t > 0,” Proc.

Amer. Math. Soc., 126, No. 9, 2721–2724 (1998).
114. T. G. Kurtz, “Extensions of Trotter’s operator semigroup approximation theorems,” J. Functional

Analysis, 3, 354–375 (1969).
115. T. G. Kurtz, “A general theorem on the convergence of operator semigroups,” Trans. Amer. Math.

Soc., 148, 23–32 (1970).
116. T. G. Kurtz and P. E. Protter, “Weak convergence of stochastic integrals and differential equations,

II. Infinite-dimensional case,” In: Probabilistic Models for Nonlinear Partial Differential Equations
(Montecatini Terme, 1995), Lect. Notes Math., 1627, 197–285 (1996).

117. R. Labbas, “Some results on the sum of linear operators with nondense domains,” Ann. Mat. Pura
Appl. (4), 154, 91–97 (1989).

118. A. Largillier, “A numerical quadrature for some weakly singular integral operators,” Appl. Math.
Lett., 8, No. 1, 11–14 (1995).

119. S. Larsson and S. Yu. Pilyugin, “Numerical shadowing near the global attractor for a semilinear
parabolic equation,” Preprint 21, Department of Mathematics, Chalmers University of Technology
(1998).

120. S. Larsson and J. M. Sanz-Serna, “The behavior of finite element solutions of semilinear parabolic
problems near stationary points,” SIAM J. Numer. Anal., 31, No. 4, 1000–1018 (1994).

121. S. Larsson and J.-M. Sanz-Serna, “A shadowing result with applications to finite element approxi-
mation of reaction-diffusion equations,” Math. Comp., 68(225), 55–72 (1999).

122. S. Larsson, V. Thomée, and L. B. Wahlbin, “Numerical solution of parabolic integro-differential
equations by the discontinuous Galerkin method,” Math. Comp., 67(221), 45–71 (1998).

123. S. Larsson, V. Thomée, and S. Z. Zhou, “On multigrid methods for parabolic problems,” J. Comput.
Math., 13, No.3, 193–205 (1995).

124. I. Lasiecka and A. Manitius, “Differentiability and convergence rates of approximating semigroups
for retarded functional-differential equations,” SIAM J. Numer. Anal., 25, No. 4, 883–907 (1988).

37



125. P. D. Lax and R. D. Richtmyer, “Survey of the stability of linear finite difference equations,” Comm.
Pure Appl. Math., 9, 267–293 (1956).

126. R. D. Lazarov, V. L. Makarov, and A. A. Samarskii, “Application of exact difference schemes for
constructing and investigating difference schemes on generalized solutions,” Mat. Sb. (N.S.), 117,
No. 4, 469–480, 559 (1982).

127. C. Le Merdy, “Counterexamples on Lp-maximal regularity,” Math. Z., 230, 47–62 (1999).
128. M. Le Roux and V. Thomée, “Numerical solution of semilinear integrodifferential equations of

parabolic type with nonsmooth data,” SIAM J. Numer. Anal., 26, No. 6, 1291–1309 (1989).
129. T. D. Lee, “Difference equations and conservation laws,” J. Statist. Phys., 46, Nos. 5–6, 843–860

(1987).
130. H. Linden, “Starke Konvergenz im verallgemeinerten Sinne und Spektra,” Math. Z., 134, 205–213

(1973).

131. H. Linden, “Über die Stabilität von Eigenwerten,” Math. Ann., 203, 215–220 (1973).
132. C. Lizama, “On an extension of the Trotter–Kato theorem for resolvent families of operators,” J.

Integral Equat. Appl., 2, No. 2, 269–280 (1990).
133. C. Lizama, “On the convergence and approximation of integrated semigroups,” J. Math. Anal. Appl.,

181, No. 1, 89–103 (1994).
134. G. J. Lord and A. M. Stuart, “Discrete Gevrey regularity, attractors and upper-semicontinuity for

a finite difference approximation to the Ginzburg–Landau equation,” Numer. Funct. Anal. Optim.,
16, Nos. 7–8, 1003–1047 (1995).

135. C. Lubich and A. Ostermann, “Runge–Kutta methods for parabolic equations and convolution
quadrature,” Math. Comp., 60(201), 105–131 (1993).

136. C. Lubich and A. Ostermann, “Runge–Kutta approximation of quasi-linear parabolic equations,”
Math. Comp., 64(210), 601–627 (1995).

137. C. Lubich and A. Ostermann, “Runge–Kutta time discretization of reaction-diffusion and Navier–
Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour,” Appl.
Numer. Math., 22, Nos. 1–3, 279–292 (1996).

138. Ch. Lubich, I. H. Sloan, and V. Thomée, “Nonsmooth data error estimates for approximations of
an evolution equation with a positive-type memory term,” Math. Comp., 65(213), 1–17 (1996).

139. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Vol. 16 of Progress
in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, Basel (1995).
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(1979).

162. S. I. Piskarev, “Error estimates in the approximation of semigroups of operators by Padé fractions,”
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methods,” Tartu Riikl. Ül. Toimetised, 833, 75–83 (1988).

213. G. Vainikko and S. Piskarev, “Regularly compatible operators,” Izv. Vuzov, Mat., 10, 25–36 (1977).
214. J. van Casteren, S. Piskarev, and S.-Y. Shaw, “Discretization of C-semigroups,” (in press).
215. J. van Casteren, S. Piskarev, and S.-Y. Shaw, “Discretization of C-semigroups,” Proceedings of the

Conference on Inverse and Ill-Posed problems, Moscow State University (1998), p. 18.
216. V. V. Vasil’ev, S. G. Krein, and S. Piskarev, “Operator semigroups, cosine operator functions,

and linear differential equations,” In: progress in Science and Technology, Seria on Mathematical
Analysis, Vol. 28 [in Russian]. All-Union Institute for Scientific and Technical Information (VINITI),
Akad. Nauk SSSR, Moscow (1990), pp. 87–202. Engl. transl.: J. Soviet Math. 54, No. 4, 1042–1129
(1991).

41



217. V.V. Vasil’ev and S. Piskarev, Differential equations in Banach spaces I. Semigroup theory. Technical
Report, Moscow State University Publishing House (1996) [in Russian].

218. V.V. Vasil’ev and S. Piskarev, “Differential equations in Banach spaces II. Cosine-operator func-
tions,” J. Soviet Math.

219. V. V. Vasil’ev and S.I. Piskarev, Bibliography on Differential Equations in Abstract Spaces. Moscow
State University (2001), Electronic journal.

( http://www.srcc.msu.su/num anal/list wrk/page 5u.htm )
PostScript (1115,2 Kb) PostScript.zip (336,1 Kb)

220. J. Voigt, “On the convex compactness property for the strong operator topology,” Note Mat., 12,
259–269 (1992).

221. L. Weis, “A new approach to maximal Lp regularity,” Proc. 6th Internat. Conf. Evolution Equations,
Marcel Dekker (2000).

222. L. Weis, “Operator-valued multiplier theorems and maximal Lp regularity,” (in press).
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