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INTRODUCTION

More than 13 years have passed since the fundamental survey [16] was prepared, which, as the author
intended, should be the first part of a large work devoted to abstract differential equations and methods
for solving them. However, the troubles being in the Russian science during the whole this period have
influenced also on the authors, and instead of two years supposed, the preparation of the second part has
occupied considerably more time.

During the last 10 years, the work in the field of differential equations in abstract spaces was very
active (in foreign countries), and every year several books and a heavy number of papers devoted to this
direction appear in the world (of course, the most of them are not available for the Russian reader). At
the same time, only two books [33, 75] of such a type appeared being translated by the authors of the
present survey and [20], which were edited by Yu. A. Daletskii. Therefore, the work whose second part is
proposed to the reader will be undoubtedly useful for the Russian reader. Its style coincides with that of
[16], i.e., the material is often presented without proofs, and the main attention is paid to the structure
of presentation, although we present certain proofs from foreing sources that are almost inaccessible for
Russian readers. From our viewpoint, this allows us to demonstrate clearly the phylosophy, to describe
the result obtained, and to indicate the main directions of the development of the theory in the framework
of a limited volume of the survey.

Moreover, the authors have prepared a separate edition of the bibliographical index [18], which can
serve as a sufficiently complete source of information about the theory of differential equations in abstract
spaces during the recent years.

The main object of the study in this part are second-order differential equations that are presented
very little in Russian literature up to now. Here, we can only mention the paper [20] written in accordance
with the own interests of the author, which does not pretend to the exhausting description of all aspects of
the theory. Moreover, the material of the present survey includes the presentation of the abstract Cauchy
problem for first- and second-order equations that is not considered in the paper [17].

As was already mentioned in [16], the phylosophy of the theory of C0-cosine operator functions is
very close to the operator semigroup theory and often is developed in parallel to it. Therefore, the reader
easily draws analogies between the material presented here and that presented in [16]. At the same time,
the theory of C0-cosine operator functions considerably differs from the operator C0-semigroup theory.
First of all, these distinctions concern with the properties inherent to the corresponding parabolic and
hyperbolic partial differential equations.

We now present the main notation, a certain part of which was already introduced in [17] and which
is also used here.
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The set of natural numbers is denoted by N, N0 := N ∪ {0}, the set of integers by Z, the set of reals
by R, and the set of complex numbers by C. A tuple of numbers 1, 2, ...,m, m ∈ N, is denoted by 1,m,
the real semiaxis (0,∞) by R+, and [0,∞) by R+.

We denote by E a Banach space over the field of complex numbers with the norm ‖ · ‖. For a Hilbert
space with the inner product (·, ·), we use the symbol H.

The boundary of a set Ω is denoted by ∂Ω, the interior of the set Ω by int(Ω), the closure in the
strong topology by Ω, and, for example, the closure in the weak topology by w-cl-(Ω).

As usual, the space dual to E is denoted by E∗, with elements x∗, y∗, ..., and the value of a functional
x∗ ∈ E∗ at an element x ∈ E is written as 〈x, x∗〉.

The domain and range of an operator A will be written as D(A) and R(A), respectively, and the
null-space (kernel) as N (A). The set of linear operators acting from D(A) ⊆ E into E is denoted by
L(E), and the set of linear continuous operators by B(E). Closed linear operators with dense domain

(D(A) = E) in E are distinguished into the set C(E) ⊂ L(E). In the case where operators act from one
space E into another F , we write L(E,F ) and B(E,F ), respectively. The linear variety D(A) endowed
with the norm ‖x‖A := ‖x‖ + ‖Ax‖ in the case of a closed linear operator becomes a Banach space; we
denote it by D(A).

We use the traditional notation for the resolvent set ρ(A) and spectrum σ(A) of an operator A;
as usial, the latter is divided into the point spectrum Pσ(A), the continuous spectrum Cσ(A), and the
residual spectrum Rσ(A).

Sections 2.2, 2.4, 6.3, 7.1–7.2, 9.2, 10.2, 10.3, 12.1–12.4, 12.6–12.10, 13.3–13.5 and Chapter 14 were
written by S. I. Piskarev, the other part of the text was prepared by the authors in collaboration.

Chapter 1

CAUCHY PROBLEM AND RESOLVING FAMILIES

Before considering the theory of C0-cosine operator functions, we describe the general picture of the
statement of the well-posed Cauchy problem in a Banach space. As is easily noted, a natural generalization
of the concept of solution leads to more general families: integrated semigroups and C-semigroups. These
families will be considered in a forthcoming survey in more detail.

1.1. Cauchy Problem for a Complete Differential Equation

Let E be a Banach space, and let A0, A1, ..., Am−1 be closed linear operators on E, i.e., Ak ∈ C(E), k ∈
0,m− 1. In the Banach space E, let us consider the following abstract Cauchy problem of order m: u(m)(t) =

m−1∑
k=0

Aku
(k)(t), t ∈ R+,

u(k)(0) = u0k, k ∈ 0,m− 1, m ≥ 2.

(1.1)

Definition 1.1.1. A function u(·) ∈ Cm(R+;E) is called a classical solution of problem (1.1) if u(k)(t) ∈
D(Ak), Aku

(k)(·) ∈ C(R+;E) for t ∈ R+, k ∈ 0,m− 1, and relations (1.1) hold.

As in [17], we define the propagators Pj(t), j = 0,m− 1, which give a solution of the Cauchy problem

(1.1) with initial conditions u
(k)
j (0) = δjku

0
j (δjk is the Kronecker symbol), i.e., uj(t) = Pj(t)u

0
j .

Definition 1.1.2. The Cauchy problem (1.1) is said to be uniformly well-posed if Pk(·)x ∈

Ck
(
R+;E

)
,P
(k−1)
m−1 (t)x ∈ D(Ak), t ∈ R+, and AkP

(k−1)
m−1 x ∈ C(R+;E) for any x ∈ E and k ∈ 0,m− 1.

In the general case, in the Banach space E, problem (1.1) has been studied incompletely. In particular
cases, some concepts are introduced, which will be considered in the next chapters in more detail.
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Definition 1.1.3. We say that an operator A generates α times integrated semigroup with α ≥ 0 if
(ω,∞) ⊆ ρ(A) for a certain ω ∈ R and there exists a strongly continuous function S(·) : [0,∞) → B(E)
such that ‖S(t)‖ ≤ Meωt, t ∈ R+, with a certain constant M ≥ 0 and

(λI −A)−1 = λα
∫ ∞
0

e−λtS(t) dt

for all λ > max{ω, 0}. The family S(·) itself is called an α times integrated semigroup.

Theorem 1.1.1 ([117]). Let m ≥ 2, and let Am−1 generate an r times integrated semigroup. Assume
that D(Ai) ⊇ D(Am−1) for all i ∈ 0,m− 2, and, moreover, AiD(Am−1) ⊆ D(Ai−m+r+2

m−1 ) for i ≥ m −

r − 1. Then problem (1.1) has a unique exponentially bounded solution for u0m−1 ∈ D(Ar+1
m−1), u0k ∈

m−1⋂
j=0

D(Ar
m−1Ai), k ∈ 0,m− 2, and for certain constants c, ω > 0, we have the following estimate for

t ∈ R+:

‖u(t)‖ + ‖Am−1u(t)‖ ≤ ceωt
{r+1∑

l=0

‖Al
m−1u

0
n−1‖ +

m−2∑
k=0

m−2∑
i=0

r∑
l=0

‖Al
m−1Aiu

0
k‖ +

m−2∑
k=0

(‖u0k‖ + ‖Am−1u
0
k‖)

}
.

In [193], this theorem was slightly changed by extending the set of initial data and by the absence of
the exponential boundedness.

Denote P (λ) :=
m∑
i=0

λiAi with the domain D(P ) :=
m−1⋂
i=0

D(Ai).

Theorem 1.1.2 ([194]). The propagators P(k)k (·), k ∈ 0,m− 1, are norm-continuous for t ∈ R+ iff there
exists τ0 ∈ R+ such that

lim
|ω|→∞

‖(τ0 + iω)m−1P−1(τ0 + iω)‖ = 0, (1.2)

lim
|ω|→∞

‖(τ0 + iω)k−1P−1(τ0 + iω)Ak‖ = 0, k ∈ 0,m− 1. (1.3)

Corollary 1.1.1. Let conditions (1.2)–(1.3) hold. Then for each k ∈ 0,m− 1, the operator Pk(t) is
norm-continuous for t ∈ R+.

The case of time-dependent Ak = Ak(t), t ∈ R+, was considered, e.g., in [227,228].
In [295], the conditions for the existence of a unique entire solution of problem (1.1) were presented.
Consider problem (1.1) with Ak ∈ C(E) for all k ∈ 0,m− 1; let D(A0) ⊆ D(Ak) for k ∈ 1,m− 1.

Theorem 1.1.3 ([226]). Under the assumptions described above, the following conditions are equivalent
for the Cauchy problem (1.1):

(i) the operator A0 generates a C0-semigroup;
(ii) for any u0, u1, ..., um−1 ∈ D(A0), the Cauchy problem (1.1) has a unique solution u(·) ∈

C(m−1)(R+,D(A0)).

The following theorem on the uniform stability of problem (1.1) holds.

Theorem 1.1.4. Let an operator A0 generate a C0-semigroup, and let u(·) be a solution of the Cauchy
problem (1.1) with initial conditions ukl (k ∈ 1,m− 1; l → ∞), ukl ∈ D(A) for k ∈ 1,m− 1, ukl → 0 in E.
Then ul(·) → 0 uniformly on any compact set.

Theorem 1.1.5 ([226]). Let A0 generate a C0-semigroup, Ak ∈ C(E), D(A) ⊂ D(Ak), and let ω be such
that for Reλ > ω, there exists a generalized resolvent (pencil resolvent)

Rλ := R(λ;A0, ..., Am−1) = (λm − λm−1Am−1 − ...− λA1 −A0)
−1
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(such an ω always exists!). Also, on D(A), let the relation AkRλ = RλAk (k ∈ 1,m− 1; Reλ > ω) hold.
Then problem (1.1) is uniformly well-posed, and its solution has the form

u(t) =
m−1∑
k=0

Qm−1−k,m−1(t)u
k, (1.4)

where the operator-valued functions Qm−1−k,m−1(t) are strongly continuous families composing the oper-
ator semigroup

G(t) =

 Q0,0(t) . . . Q0,m−1(t)
...

. . .
...

Qm,0(t) . . . Qm−1,m−1(t)

 , t ∈ R+,

with the generator

Γ =


A0 I 0 . . . 0
A1 0 I . . . 0
... 0

. . .
. . . 0

...
...

. . .
. . . I

Am−1 0 0 . . . 0

 .

Now let us consider the Cauchy problem for the following equation of order m having the special
form:

m∏
j=1

(
d

dt
−Aj

)
u(t) ≡

(
d

dt
−Am

)
...

(
d

dt
−A1

)
u(t) = 0 (1.5)

with initial conditions

u(k)(0) = u0k, k ∈ 0,m− 1, m ≥ 2,

and operators Aj ∈ C(E), j ∈ 1,m.

Definition 1.1.4. The Cauchy problem (1.5) is said to be uniformly well-posed if the following conditions
hold:

(i) there exists a solution of the Cauchy problem (1.5) for u0, ..., um−1 taken from a certain dense set
D in E;

(ii) for u0, ..., um−1 ∈ D, the solution of the Cauchy problem (1.5) has the property

k∏
j=1

(
d

dt
−Aj

)
u(t) ∈ Cm−k(R+, E) (1.6)

for k ∈ 1,m− 1;
(iii) the uniform stability of the solution of (1.5) is complemented by the following condition on any

compact set: the convergence
k∏

j=1

(
d

dt
−Aj

)
up(0) → 0

implies the convergence
k∏

j=1

(
d

dt
−Aj

)
up(t) → 0

uniformly on each compact set in R+ (here, k ∈ 1,m− 1; p → ∞).
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Theorem 1.1.6 ([20]). In the Cauchy problem (1.5), let Aj ∈ C(E) (j ∈ 1,m), let the intersection of the
resolvent sets ρ(Aj) of the operators Aj be nonempty, and let the set

D̃ ≡ ∩{D(Ai1 ...Aim) : ik ∈ 1,m} (1.7)

be dense in E. Then problem (1.5) is uniformly well-posed iff Aj generates a C0-semigroup for each
j ∈ 1,m.

Theorem 1.1.7 ([20]). Under the conditions of Theorem 1.1.6, let the operators Aj generate C0-
semigroups for j ∈ 1,m, and, moreover, let these semigroups commute:

exp(tAi) exp(sAj) = exp(sAj) exp(tAi), t, s ∈ R, i, j ∈ 1,m. (1.8)

Then problem (1.5) is well posed.

Theorem 1.1.8. For the Cauchy problem (1.5), let the conditions of Theorem 1.1.7 hold, and let 0 ∈

ρ(Ai − Aj) for all i �= j. Then the condition w(t) ∈ N
( m∏

i=1

( d

dt
− Ai

))
for t ∈ R implies the relation

w(t) =
m∑
i=1

wi(t), where wi(t) ∈ N
( d

dt
−Ai

)
, t ∈ R.

Condition (1.8) in Theorem 1.1.7 can be replaced by a number of conditions imposed on the domains
R(Ai −Aj) for i �= j.

Let 1, ϕ1, ϕ2, ..., ϕp−1 be roots of pth degree of the unity, i.e., ϕk = e
2πk
p

i
.

Definition 1.1.5. A C0-function of the Mittag-Leffler type with a parameter p is a function M : C →
B(E) having the following properties:

(i)
p−1∑
k,l=0

M(ϕkt + ϕls) = p2M(t)M(s) for any t, s ∈ R;

(ii) M(0) = I;
(iii) the family of operators T (t) ≡ M(ϕkt + ϕls), k, l ∈ 0, p− 1, with a fixed s ∈ R is strongly

continuous in t ∈ R.

For the Mittag-Leffler C0-function with a parameter p, the p-generator A is defined by the relation

Ax = s- lim
t→0

p!
M(t) − I

tp
x

for those x at which the limit exists. It is known that the generator of the Mittag-Leffler C0-function
with a parameter p is a linear closed densely defined operator, and the following relation holds for any
x ∈ D(A):

dp

dtp
M(t)x = AM(t)x =M(t)Ax,

and, moreover, M(k)(0) = 0 for k ∈ 0, p− 1 .
For the Mittag-Leffler C0-function with a parameter p, the perturbation theorems of the Philips–

Miyadera type hold (see [17]).

Theorem 1.1.9 ([32]). Let A generate a Mittag-Leffler C0-function with a parameter p, and let ‖M(t)‖ ≤
Meωt, t ∈ R. Then for any B ∈ B(E), the operator A + B generates a Mittag-Leffler C0-function with
the parameter p.

Proposition 1.1.1. The Mittag-Leffler C0-function with a parameter p is a C0-group of operators in the
case of p = 1, and in the case of p = 2, it is a C0-cosine operator-valued function. A Mittag-Leffler
C0-function with a parameter p has a bounded generator A ∈ B(E) for p ≥ 3.

In the simplest case m = 2, for example, the following theorems hold for problem (1.1).
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Theorem 1.1.10 ([226]). Let the Cauchy problem (1.1) be uniformly well-posed for m = 2, and let
P ′1(t)E ∈ D(A1) for t ∈ R+. Then A0 generates a C0-cosine operator-valued function on E.

Theorem 1.1.11 ([226]). Let A1 ∈ B(E). Then the Cauchy problem (1.1) is uniformly well posed for
m = 2 iff A0 generates a C0-cosine operator-valued function on E.

However, in the general case, even for m = 2, the Cauchy problem (1.1) turns out to be very
complicated. First, in [134], H. O. Fattorini has presented an example of the Cauchy problem (1.1) that
has a solution for m = 2, but this solution is not exponentially bounded. Second, in contrast to the
Cauchy problem for m = 1, the case m = 2 admits more flexibility in the sense of well-posedness of its
statement.

As one of the variants, let us present the approach coming back to H. O. Fattorini. The constructions
used in proving these theorems practically completely repeat the techniques used in proving the assertions
concerning C0-cosine and C0-sine operator-valued functions (see also [30]).

Consider the Cauchy problem

u′′(t) + Bu′(t) + Au(t) = 0, t ∈ R+, u(0) = u0, u′(0) = u1, (1.9)

with A,B ∈ C(E).

Definition 1.1.6. We say that the operators A and B generate M,N-families of operators on E if the
following conditions hold:

(i) M(t) and BN(t) are strongly continuous in t ∈ R+, and the function N(t)x is strongly continuously
differentiable in t ∈ R+ for any x ∈ E;

(ii) the set Ê = {x ∈ E : M(t)x is strongly differentiable in t ∈ R+, and BM(t)x is continuous in
t ∈ R+} is dense in E;

(iii) the operator A = −M ′′(0) is B-closed, and Bx = −N ′′(0)x for all x ∈ Ê;
(iv) M(0) = N ′(0) = I and N(0) = 0;

(v) M(t + s)x = M(t)M(s)x + N(t)M ′(s)x for all x ∈ Ê and t, s ∈ R+;
(vi) N(t + s) = M(t)N(s) + N(t)N ′(s) for all t, s ∈ R+.

Theorem 1.1.12 ([30]). Let A and B generate M,N-families. Then

(i) A is closed, D(A) ∩D(B) ⊆ Ê ⊆ D(B), and D(A) ∩D(B) is dense in E;
(ii) the families M and N are uniquely defined by the operators A and B;
(iii) M ′(0)x = 0 for all x ∈ D(M ′(0));
(iv) M ′(t)x = −N(t)Ax for all x ∈ D(A) and t ∈ R+;

(v) N ′(t)x = M(t)x−N(t)Bx for all x ∈ Ê and t ∈ R+;
(vi) N ′′(t)x + N ′(t)Bx + N(t)Ax = 0 for all x ∈ D(A) ∩D(B) and t ∈ R+;

(vii) for all x ∈ Ê and t ∈ R+, the element N ′(t)x ∈ Ê, N(t)x ∈ D(A), and N ′′(t)x−x+BN ′(t)x+
AN(t)x = 0;

(viii) for all x ∈ E and t ∈ R+, the element
t∫
0

N(s)xds ∈ D(A) and N ′′(t)x − x + BN(t)x +

A
∫ t
0 N(s)xds = 0;

(ix) for all x ∈ E and t ∈ R+, the element
t∫
0

N(s)xds ∈ Ê, M(t)x ∈ D(A) and M ′′(t)x+BM ′(t)x+

AM(t)x = 0;

(x) for all x ∈ D(A)
⋃
Ê and t ∈ R+, the element M(t)x − x ∈ Ê,

t∫
0

M(s)xds ∈ D(A), and

M ′x + B(M − I)x + A
t∫
0

M(s)xds = 0;
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(xi) there exist constants C,ω ≥ 0 such that

‖M(t)‖, ‖N(t)‖, ‖BN(t)‖, ‖N ′(t)‖ ≤ Ceωt, t ∈ R+,

and for all x ∈ Ê, there exist constants C,ω ≥ 0 such that

‖M ′(t)x‖, ‖BM(t)x‖ ≤ C(x)eωt, t ∈ R+;

(xii) the operator λ2 + λB + A is closable for all λ ∈ C;
(xiii) there exists a constant ω ∈ R+ such that λ ∈ ρ(A,B) for all λ with Reλ > ω and

∆(λ)x := (λ2 + λB + A)−1x =

∫ ∞
0

e−λtN(t)xdt for x ∈ E;

∆(λ)(I + B)x =

∫ ∞
0

e−λtM(t)xdt for x ∈ Ê;

(xiv) λ2∆(λ)x → x as λ → ∞ for all x ∈ E.

The following analog of Theorem 2.1.1 from [17] holds.

Theorem 1.1.13 ([294]). Operators A and B generate M,N-families iff the following conditions hold:
(i) the operators A and B are closed, and D(A)

⋂
D(B) is dense in E;

(ii) there exist constant C,ω ≥ 0 such that λ ∈ ρ(A,B), and for Reλ > ω, the operator ∆(λ)A is
closable and

‖(λ∆(λ))(k)‖, ‖(B∆(λ))(k)‖, ‖(∆(λ)B)(k)‖ ≤
Ck!

(Reλ− ω)k+1
for k ∈ N, Reλ > ω, (1.10)

where ∆(λ)B is a bounded extension of the operator ∆(λ)B with the domain D(A) ∩D(B) and (·)(k) is
the derivative of order k in λ.

In the case where A and B commute, instead of the estimate with the operator B in (1.10), it can
be, e.g., ∥∥∥∥ dk

dλk

(
(λI −A)∆(λ)

)∥∥∥∥ ≤
Mk!

(Reλ− ω)k+1
, k ∈ N0

(see [30]).
If A = 0, then A and B generate M,N -families iff B generates a C0-semigroup.
Let D(B) ⊆ D(A), and let ρ(B) �= ∅. If (λ0I −B)−1A has a bounded extension for a certain point

λ0 ∈ ρ(B), then A and B generate M,N -families iff B generates a C0-semigroup.

Proposition 1.1.2 ([294]). Let B be dominated by A with exponent 0 ≤ α ≤ 1, i.e., D(A) ⊆ D(B) and
‖Bx‖ ≤ Cα‖x‖1−α‖Ax‖α for all x ∈ D(A), and let A and B commute. If −A generates a C0-cosine
operator-valued function and ‖(λ2I + A)−1‖ ≤ C|λ|−2 for Reλ > ω, then A and B generate M and N
families.

Now let us consider an analytic extension of a solution of Eq. (1.9) to the sector Σ(θ) = {z ∈ C :
z �= 0, | arg z| < θ}.

Theorem 1.1.14 ([294]). For given θ, ω ≥ 0, the following conditions are equivalent:
(i) the Cauchy problem (1.9) is uniformly well posed, the families M,N can be analytically extended

to the sector Σ(θ) = {z ∈ C : z �= 0, | arg z| < θ}, for any z we have the embedding N(z)E ⊆ D(B), and
BN(·) is analytic in Σ(θ). Moreover, for each θ′ ∈ (0, θ), x ∈ E,

lim
z∈Σθ′
z→0

N ′(z)x = 0, lim
z∈Σθ′
z→0

BN(z)x = 0, lim
z∈Σθ′
z→0

M(z)x = x, lim
z∈Σθ′
z→0

N(z)x = 0,

and there exists a constant C ′θ > 0 such that

‖N ′(z)‖, ‖BN(z)‖, ‖M(z)‖ ≤ C ′θe
ωRe z for all z ∈ Σ(θ);
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(ii) the set D(A) ∩D(B) is dense in E. For each θ′ ∈ (0, θ), there exists M ′
θ > 0 such that for

λ ∈ Σ(θ′, ω) =
{
λ ∈ C : λ �= ω, | arg(λ− ω)| <

π

2
+ θ′

}
,

the operator ∆(λ) := (λ2 + λB + A)−1 ∈ B(E) exists, the operator ∆(λ)A is closable, and

‖λ∆(λ)‖ ≤
M

|λ− ω|
, ‖B∆(λ)‖ ≤

M

|λ− ω|
, ‖∆(λ)B0‖ ≤

M

|λ− ω|
,

where B0 ⊆ B with D(B0) = D(A) ∩D(B). Moreover, in this case, we have

N ′′(z) + BN ′(z) + AN(z) = 0, M ′′(z) + BM ′(z) + AM(z) = 0,

where AN(z) and AM(z) are analytic in Σ(θ). For each θ′ ∈ (0, θ),

lim
z∈Σθ′
z→0

M ′(z)x = 0 for any x ∈ D(A).

The existence and uniqueness of solutions of Eq. (1.9) under certain “hyperbolic” conditions is
considered in [230]. Problem (1.9) in the case of nonlinear B was considered in [188].

1.2. Cauchy Problems for Differential Equations of the 1st and 2nd Orders

In this section, we present certain statements of the Cauchy problem for equations of the first and
second orders. Equations of the first order were already considered in the paper [17] but, however, only
in connection with C0-semigroups on the space E.

As was already noted, different statements of the Cauchy problem are possible. We now present
certain arguments that show that a solution is given not by C0-families on the whole space E.

Definition 1.2.1. An integrated solution of the Cauchy problem

u′(t) = Au(t), u(0) = x, (1.11)

is a continuously differentiable function v(·) : R+ → E such that

(i) v(·) ∈ C([0,∞);D(A)) and (ii)
dv

dt
(t) = Av(t) + x, v(0) = 0.

Definition 1.2.2. Denote by Z(A) the resolving set of the operator A, i.e., the set of all x ∈ E for which
the Cauchy problem (1.11) has an integrated solution.

Proposition 1.2.1. Let Z(A) be the resolving subspace endowed with the family of seminorms

‖x‖a,b = sup
t∈[a,b]

‖u(t)‖, a, b ∈ R+. (1.12)

Then Z(A) is a Frechét space and T (t)x = u(t) is a locally equicontinuous semigroup generated by
the operator A|Z(A).

Recall the definition of entire vectors, which is equivalent to [17, Definition 3.1.3].

Definition 1.2.3. Denote by Uc(A) the set of entire vectors of an operator A, i.e., the set of x ∈ D(A∞)
such that for any t ∈ R+,

∞∑
k=0

‖Akx‖
tk

k!
< ∞.

Proposition 1.2.2 ([116]). Any linear closed operator on E with the resolvent set ρ(A) containing the
semiaxis (ω,∞) generates a C0-semigroup on a certain maximal subspace in E.

Proposition 1.2.3 ([116]). For any closed linear operator A, there exists a maximal Frechét space Z(A)
such that Z(A) ⊆ E and the Cauchy problem (1.11) is automatically well posed on Z(A).
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As is seen from this proposition, the requirement of existence of a C0-semigroup is very restrictive. At
the same time, namely for C0-families of operators, the technical tools for studying approximate methods
are most well elaborated.

Theorem 1.2.1 ([116]). Let A ∈ C(E). Then Uc(A) = {x ∈ E : problem (1.11) has an entire solution}
and Uc(A) ⊆ Z(A).

Theorem 1.2.2 ([84]). Let A generate an analytic C0-semigroup on E. Then Uc(A) = Z(A), and,
moreover, the equality holds topologically and algebraically.

As is known, a self-adjoint operator A∗ = A ≤ 0 on a Hilbert space H generates an analytic C0-
semigroup, as well as a C0-cosine operator function. Moreover, in this case, by the Stone theorem,
the operator iA generates an unitary C0-group on H. At the same time, the practical problems often
require the omitting of the self-adjointness of the operator and Hilbert property of the initial space.
Therefore, to reveal whether a concrete operator generates a C0-semigroup or not is not a simple but
often a complicated independent problem. Here, we present examples showing when the verification of
generation of C0-families on the Banach space E is possible.

Theorem 1.2.3 ([43]). For A ∈ C(E) to be a generator of an analytic C0-semigroup, it is necessary
and sufficient that there exist numbers ν, ω, and α > 1 such that the following inequality holds for all
Reλ > ω0:

‖(λαI −A)−1‖ ≤
M |λ|ν

(Reλ)ν+α−1(Reλ− ω)
;

moreover, the following representation holds for this semigroup:

exp(zA) = −
α

2πi

∫ ω+i∞

ω−i∞
ezµ

α

µα−1(µαI −A)−1 dµ

for z ∈
{
z ∈ C : Im z < Re z

∣∣∣cot
απ

2

∣∣∣}.
Let Ω ⊂ Rd be a certain domain. Denote by C(Ω) the space of uniformly continuous bounded

functions on Ω with the norm

‖v(·)‖C(Ω) = sup
x∈Ω

|v(x)|,

and let Cρ(Ω) = {v(·) : ρ(·)v(·) ∈ C(Ω), ρ(t) ≥ 0}, ‖v(·)‖Cρ(Ω) = ‖ρ(·)v(·)‖C(Ω).

Example 1.2.1 ([43]). Let Ω = [0, 1], and let Av = v′′(·) with D(A) = {v(·) : v ∈ C(Ω), Av ∈

C(Ω), v′(0) = v′(1) = 0}. Then A ∈ H
(
ω,

π

2

)
in C([0, 1]).

At the same time, for the operator A0v = v′′(·) with D(A0) = {v(·) : v ∈ C([0, 1]), v(0) = v(1) = 0},
we have A0 ∈ H(0, β) on C0([0, 1]) = {v(·) : v ∈ C([0, 1]), v(0) = v(1) = 0}.

Finally, the operator Aρv = v′′ with D(Aρ) = {v(·) : ρ(·)v(·) ∈ C([0, 1]), Aρv ∈ Cρ([0, 1])} generates
an analytic C0-semigroup with the estimate

‖ exp(tAρ)‖Cρ([0,1]) ≤ e−π
2t, t ∈ R+.

Example 1.2.2 ([43,268]). The Laplace operator ∆v =
d∑

j=1

∂2v(x)

∂x2j
, x ∈ Rd, for 1 < p < ∞ gives a

generator of an analytic C0-semigroup on E = W 2,p(Rd).

Here, it is appropriate to recall (see [167]) that the operator i∆ does not generate a C0-semigroup on
Lp(Rd) for p �= 2. Moreover, the operator ∆ generates a C0-cosine operator function iff p = 2 or d = 1.

Also, we note (see [125]) that the operator −(i∆)1/2 does not generate a C0-semigroup on L1(R1).
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Example 1.2.3 ([125]). The Laplace operator ∆ on Lp(Rd), 1 ≤ p < ∞, generates an α times integrated

cosine operator function for α > (d− 1)

∣∣∣∣12 −
1

p

∣∣∣∣.
Example 1.2.4 ([124]). Let Ã be a strongly elliptic operator on Ω ⊆ Rd. Denote by Tr(·) the C0-
semigroup generated by the operators Ã with the Dirichlet or Neumann conditions on the boundary
in Lr(Ω). Then there exists an analytic C0-semigroup Tp(·) with the angle π/2 in Lp(Ω) such that
Tp(t)x = Tr(t)x for all x ∈ Lp(Ω) ∩ Lr(Ω).

Example 1.2.5 ([125]). Let 1 < p < ∞, let the operator Ãp generate a semigroup Tp(·), and let µ(Ω) <

∞. Then Ãp generates an α times integrated cosine operator function on Lp(Rd) for

α >
d

2

∣∣∣∣12 −
1

p

∣∣∣∣ +
1

2
.

Example 1.2.6 ([35]). Let Ω = R+. The operator (Av)(x) = v′′(x) +
a

x
v′(x) +

c

x
v(x) generates an

analytic C0-semigroup for a, c ∈ R and D(A) = {v(·) : v ∈ C(R+), Av ∈ C(R+)} iff c ≤ 0.

Example 1.2.7 ([43]). Let Ω = [−1, 1]. Then the operator (Av)(x) =
d

dx

(
(1 − x2)

dv(x)

dx

)
with D(A) =

{v(·) : v ∈ C(Ω), Av ∈ C(Ω)} generates a C0-semigroup.

Example 1.2.8 ([43]). Let (Av)(x) = v′′(x) + q(x)v(x), x ∈ R. Denote by Sp the Banach space of
Stepanov functions, i.e., the space of functions on R with the norm

‖v(·)‖p,l = sup
x∈R

(
1

l

∫ x+l

x

|f(s)|p ds

) 1
p

, l > 0, p ≥ 1.

It is known that for different l, the norms are equivalent. For the operator A ∈ H(ω, β) on C(R), it
suffices, and in the case q(x) ≥ c > −∞, it is necessary that q(·) ∈ S1.

Denote H−1(z) =
2
√
π

∫ ∞
0

e−s
2−2sz ds and

Hτ (t)(λ2I −A)−1 = −
1

2πi

ω+i∞∫
ω−i∞

H−1(λτ)eλtλ(λ2I −A)−1 dλ.

Theorem 1.2.4 ([35]). For A ∈ C(M,ω), it is necessary and sufficient that this operator be the generator
of an analytic C0-semigroup, and for each t ∈ [0, T ], the estimate

‖Hτ (t)(λ2I −A)−1‖ ≤ M(t) (1.13)

hold uniformly in τ ∈ (0, ε), ε > 0. In this case,

C(t, A) = s- lim
τ→0

(Hτ (t) + Hτ(−t))(λ2I −A)−1, t ∈ R+.

Example 1.2.9 ([35]). Let the operator A be given as in Example 1.2.6. Then for the function

fτ (x) =


0 if x ∈ [0, 1),

x− 1

2τ
if x ∈ [1, 1 + 2τ),

1 if x ∈ [1 + 2τ,∞)

we have ‖Hτ (1)(λ2I − A)−1fτ‖ >
M

τ
, and, therefore, by Theorem 1.2.4, such an operator A does not

generate a C0-cosine operator-valued function.
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Example 1.2.10 ([43]). Consider the operator A from Example 1.2.6 but on the space Cρ(R+) with

ρ(x) = xexγ, x ∈ R+, γ ∈ R. Then ‖Hτ (t)(λ2I −A)−1v‖Cρ ≤ Me|µt|‖v‖Cρ , and, therefore, A ∈ C(M,ω).

Example 1.2.11 ([43]). Let A be given as in Example 1.2.8. For A ∈ C(M,ω) on the space C(R) it is
sufficient, and in the case q(x) ≥ c > −∞, it is necessary that q(·) ∈ S1.

Consider the problem

∂2u(t, x)

∂t2
= xm

∂2u(t, x)

∂x2
+ αxm−1

∂u(t, x)

∂x
(1.14)

where m > 0, x > 0, and initial conditions lim
t→0

u(t, x) = ϕ(x), lim
t→0

∂u(t, x)

∂t
= ψ(x) for any x ∈ R+, where

ϕ,ψ ∈ C(2)(R+)∩E, and E is the Banach space of functions ϕ ∈ C(R+) such that lim
x→0

ϕ(x) = lim
x→∞

ϕ(x) =

0 with the norm ‖ϕ‖ = sup
x∈R+

|ϕ(x)|.

Definition 1.2.4. Problem (1.14) is said to be uniformly well-posed if for any compact set J ⊂ R+, we
have max

t∈J
|u(t, x)| ≤ M(‖ϕ‖ + ‖ψ‖).

Example 1.2.12 ([43]). For the operator (Av)(x) = xmv′′(x) + αxm−1v′(x) with D(A) = {v ∈ E : v ∈

C(2)(R+)∩E, Av ∈ E} on the space E just described, condition (1.13) holds for 0 ≤
2α− (1 + α)m

2 −m
< 1.

For
2α− (1 + α)m

2 −m
≥ 1, the operator A does not generate a C0-cosine operator-valued function.

Example 1.2.13 ([43]). For the operator ∆ =
d∑

i=1

∂2

∂x2i
defined on the space C(Rd), the operator ∆2k+1

on C(Rd) generates a C0-cosine operator-valued function iff d ≤ 4k + 1.

Here, in connection with Example 1.2.13, it is relevant to note that for any A ∈ C(M,ω), every

polynomial P (A) = A2m+1 +
2m∑
k=0

ckA
k, ck ∈ R, generates an analytic semigroup.

Moreover, in the case of an even m, the operator (−1)m+1Am does not necessarily generate a C0-
cosine operator function.

Proposition 1.2.4 ([177]). Let A ∈ C(M, 0). Then for any k ∈ N, the operator (−1)kA2
k
generates an

α times integrated cosine operator function for a certain α > 0. Moreover, (−1)kA2
k
∈ H(ω, π/2).

Theorem 1.2.5 ([231]). Let A ∈ H
(

0,
π

2

)
, and let m ∈ N. Let Bi ∈ B(E), i ∈ 1,m. Then the operator

(−1)m+1Am + B1A
m−1 + ... + Bm−1A + Bm generates an analytic C0-semigroup with the angle

π

2
.

An analogous assertion is not true for C0-cosine operator functions!

Theorem 1.2.6 ([178]). Let {Aj}mj=1 be resolvent commuting operators, and let Aj ∈ C(M, 0), j ∈ 1,m,

be given on E. Define A0 =
m∑
j=1

Aj, D(A0) =
m⋂
j=1

D(Aj). Then the operator A0 is closable and A0

generates an α times integrated cosine operator function for α ≥
m− 1

2
.

Moreover, this α times integrated semigroup satisfies the estimate ‖S(t)‖ ≤ Mαt
α, t ∈ R+ for certain

Mα > 0 and α ≥
m− 1

2
.

Theorem 1.2.7 ([177]). Under the conditions and notation of Theorem 1.2.6, the operator iA0 generates
a β times integrated semigroup for β > m/2.
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Proposition 1.2.5 ([178]). Under the conditions of Theorem 1.2.6 and an additional assumption that
the space E = H is a Hilbert space, A0 generates a C0-cosine operator function.

Proposition 1.2.6 ([178]). Let the conditions of Theorem 1.2.6 hold and, additionally, let E = H be a
Hilbert space and a Banach lattice, and, moreover, let C(t, Aj)H+ ⊆ H+, t ∈ R, j ∈ 1,m. Define

Ck(t) =


t∫
0

(t− s)k−1

(k − 1)!
C(s,A0) ds for k ≥ 1,

C(t, A0) for k = 0.

Then Ck(·) are positive for k ≥
[m

2

]
.

Example 1.2.14 ([162]). Let E = Lp(Rd), 1 < p < ∞. Then the Laplace operator ∆ with D(∆) =

W 2,p(Rd) generates an α times integrated cosine operator function iff α ≥ (d− 1)

∣∣∣∣12 −
1

p

∣∣∣∣.
In [296], concrete differential operators are studied for revealing whether or not they generate a

well-posed Cauchy problem for a complete second-order equation.

1.3. Resolvent Families

For functions k(·) ∈ Lp
loc(R+) and g(·) ∈ W 1,1([0, T ];E), let us consider the Volterra equation

u(t) = g(t) +

∫ t

0
k(t− s)Au(s) ds, t ∈ [0, T ]. (1.15)

Definition 1.3.1. A strongly continuous family of bounded linear operators {R(t) : t ∈ R+} on E is
called a resolvent family for (1.15) if it commutes with the operator A and

R(t)x = x +

∫ t

0
k(t− s)AR(s)xds for x ∈ D(A), t ∈ R+.

If there exists a resolvent family, then any solution of Eq. (1.15) is represented in the form

u(t) = R(t)g(0) +

∫ t

0
k(t− s)g′(s) ds, t ∈ [0, T ]. (1.16)

Theorem 1.3.1 ([113,149,244]). Let R(·) be a strongly continuous family of operators on R+ such that
‖R(t)‖ ≤ Meωt and |k(t)| ≤ Meωt, t ∈ R+. Then R(·) is a resolvent family iff the following conditions
hold:

(i) k̂(λ) �= 0 and
1

λk̂(λ)
∈ ρ(A) for all λ ≥ ω;

(ii)

(I − λk̂(λ)A)−1x =

∫ ∞
0

eλtR(t)xdt

for all x ∈ E and λ > ω, where k̂(·) is the Laplace transform of the function k(·).

In particular, it should be noted that for k(t) ≡ 1, the resolvent family is a C0-semigroup of operators,
and for k(t) = t, it is a C0-cosine operator function. Therefore, the proof of a number of assertions on
properties related to C0-semigroups and C0-cosine operator functions can be obtained from assertions
related to resolvent families.

For the kernel k(·) satisfying certain restrictions (positivity and bounded variation) for a resolvent
family, many results that hold for C0-semigroups and C0-cosine operator functions were reproved. So,
for example, in [196–198], C. Lizama has reproved the assertions on the compactness properties, uniform
continuity, and periodicity. In [170], Jung Chan Chang and S.-Y. Shaw have reproved the theorems on
multiplicative and additive perturbations.
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1.4. Incomplete Cauchy Problem

For a second-order equation, let us consider the so-called incomplete Cauchy problems

u′′(t) = Au(t), t ∈ R+,

u(0) = u0, sup
t∈R+

‖u(t)‖ < ∞; (1.17)

u′′(t) = Au(t), t ∈ R+,

lim
t→0+

u(t) = u0, lim
t→∞

‖u(t)‖ = 0;
(1.18)

u′′(t) = Au(t), t ∈ R+,

u(0) = u0, lim
t→∞

‖u(t)‖ = 0.
(1.19)

Incomplete Cauchy problems were studied in [116,136,139].

Proposition 1.4.1. An operator A has the square root
√
A such that exp(t

√
A) is a bounded analytic

C0-semigroup iff problem (1.17) has a unique solution for each u0 ∈ D(A) and this solution is analytically
continued to a certain sector containing the semiaxis R+.

Proposition 1.4.2. Let there exist
√
A generating a differentiable C0-semigroup such that s-

lim
t→∞

exp(t
√
A) = 0. Then problem (1.18) has a unique solution for any u0 ∈ E.

Proposition 1.4.3. Let
√
A generate a C0-semigroup such that s- lim

t→∞
exp(t

√
A) = 0. Then problem

(1.19) has a unique solution for each u0 ∈ D(A).

Definition 1.4.1. A C0-semigroup exp(·A) is called a C0-semigroup stable in degree q ∈ N if s-
lim
t→∞

exp(tA)x = 0 for each x ∈ D(Aq). A C0-semigroup stable in degree 0 is said to be uniformly

stable.

Theorem 1.4.1. Assume that an operator B generates a C0-semigroup stable in degree 2 and a function
v(·) has a continuous second derivative and satisfies the equation

v′′(t) = B2v(t), t ∈ R+,

and, moreover, s- lim
t→∞

v(t) = 0. Then v(t) = exp(tB)v(0), t ∈ R+.

Theorem 1.4.2. Let A = B2, where the operator B generates a C0-semigroup. Then
(i) if exp(·B) is stable in degree 2, then problem (1.19) is well posed;
(ii) if exp(·B) is stable in degree 1, then the following problem is well posed:

u′′(t) = Au(t), t ∈ R+, u(0) = x,

lim
t→∞

‖u(t)‖ = 0, lim
t→∞

‖u′(t)‖ = 0;
(1.20)

(iii) if exp(·B) is uniformly stable, then the following problem is well posed:

u′′(t) = Au(t), t ∈ R+, u(0) = x,

lim
t→∞

‖u(k)(t)‖ = 0, k ∈ N0.
(1.21)

Proposition 1.4.4. Let ρ(A) �= ∅. Then

(i) problem (1.19) is well posed iff the operator A has the square root
√
A generating a C0-semigroup

stable in degree 2;
(ii) problem (1.20) is well posed iff the operator A has the square root

√
A generating a C0-semigroup

stable in degree 1;
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(iii) problem (1.21) is well posed iff the operator A has the square root
√
A generating a stable C0-

semigroup.

Corollary 1.4.1. Any operator A has not more than one square root
√
A generating a C0-semigroup

stable in degree 2.

Theorem 1.4.3. Let B and C be self-adjoint commuting operators on a Hilbert space H. Then there
exist closed complementable subspaces H1 and H2 such that if A = B + iC, then problems (1.19), (1.20),
and (1.21) are well posed on H1 and the problem

u′′(t) = Au(t), t ∈ R+,

u(0) = u0, u′(0) = u1.
(1.22)

is well posed on H2.

Definition 1.4.2. The regularized fractional derivative of order 0 < α < 1 of a function u(·) is the
function

(D(α)u)(t) = (Dα
0+u)(t) −

1

Γ(1 − α)

u(0)

tα
,

where

(Dα
0+u)(t) =

1

Γ(1 − α)

d

dt

(∫ t

0

u(ξ)

(t− ξ)α
dξ

)
.

Consider the Cauchy problem

(D(α)u)(t) = Au(t), 0 < t ≤ T, u(0) = u0, (1.23)

with a closed operator A. By a solution of problem (1.23) we mean a function u(·) such that
(i) u(·) ∈ C([0, T ];E);
(ii) for t ∈ R+, the values u(t) ∈ D(A);

(iii) the fractional integral
1

Γ(1 − α)

∫ t

0

u(ξ)

(t− ξ)α
dξ is continuously differentiable for t ≥ 0, and

(iv) the function u(·) satisfies (1.23).

Theorem 1.4.4 ([44]). Let there exist the resolvent (λαI −A)−1 for λ > ω > 0, and let

lim
λ→∞

λ−1/α ln ‖(λI −A)−1‖ = 0.

Then a solution of problem (1.23) is unique.

Theorem 1.4.5 ([44]). Let the resolvent (λαI − A)−1 exist in the half-plane Reλ > ω > 0, and for the
same λ, let

‖(λαI −A)−1‖ ≤ C(1 + | Imλ|)−β , 0 < β < 1.

Then problem (1.23) has a unique solution. This solution is infinitely differentiable for t > 0, and for
each t, its value continuously depends on the initial data u0.

Chapter 2

COSINE AND SINE OPERATOR FUNCTIONS

The existing parallelism between the theory of C0-semigroups of operators and the theory of C0-cosine
operator functions has a distinctive character. On one hand, a number of definitions and properties
practically repeat each other almost literally. On the other hand, for second order equations, by the
Kisynski theorem, the main object corresponding to a C0-cosine operator function is a C0-group, which
excludes the appearance of “parabolicity,” despite the fact that the generator A of a C0-cosine operator
function also generates an analytic C0-semigroup.
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2.1. Measurability of Operator Semigroups and Cosine Operator Functions

The measurability property of a cosine operator function profitably differs from that of a semigroup.
By the evenness, the measurability of a cosine operator function implies the strong continuity at zero.
We have an analogous situation for perturbation families.

Definition 2.1.1. A function T (·) : R+ → B(E) is called an operator semigroup if it satisfies the condi-
tions T (t + h) = T (t)T (h) for any t, h ∈ R+ and T (0) = I.

Definition 2.1.2. A function C(·) : R→ B(E) is called an operator cosine (or a cosine operator function)
if it satisfies the condition C(t + h) + C(t− h) = 2C(t)C(h) for any t, h ∈ R and C(0) = I.

Definition 2.1.3. A function S(·) : R→ B(E) is called an operator sine (or a sine operator function) if
it satisfies the condition S(t + h) + S(t− h) = 2S(t)C(h) for any t, h ∈ R and S(0) = 0.

Theorem 2.1.1 ([186]). Let an operator semigroup T (·) be strongly measurable, i.e., the function T (·)x
is strongly measurable on R+ for any x ∈ E. Then it is strongly continuous on R+.

We stress that in Theorem 2.1.1, the strong continuity is asserted only on R+ but not on R+ !

Proposition 2.1.1 ([186]). Let a function t → T (t)x be strongly measurable on R+. Then it is locally
bounded.

Proposition 2.1.2 ([186]). Let an operator cosine C(·) be strongly measurable on R+. Then it is strongly
continuous on R.

Proposition 2.1.3 ([186]). Let a function t → C(t)x be strongly measurable on R+. Then it is locally
bounded.

Theorem 2.1.2 ([185]). Let a cosine operator function C(·) be such that its restriction to a certain
interval J ⊆ R be weakly Lebesgue measurable, and let the space E be separable and reflexive. Then C(·)
is weakly continuous on R.

2.2. Multiplicative and Additive Families. Measurability and Continuity

Definition 2.2.1. Let C(·, A) be a C0-cosine operator function. A family {F (t) : t ∈ R} of operators in
B(E) is called a multiplicative perturbation family for C(·, A) if F (0) = 0 and

F (t + s) − 2F (t) + F (t− s) = 2C(t, A)F (s) for t, s ∈ R. (2.1)

Definition 2.2.2. A family {G(t) : t ∈ R} of operators in B(E) is called an additive perturbation family
for a C0-cosine operator function C(·, A) if G(0) = 0 and

G(t + s) − 2G(t) + G(t− s) = 2G(s)C(t, A) for t, s ∈ R. (2.2)

If these families are strongly continuous at zero, then they are called a multiplicative perturbation
C0-family and additive perturbation C0-family, respectively.

Clearly, F (·) and G(·) are even functions. The terminology mentioned above is chosen by analogy
with the corresponding definitions of perturbation families U(·) and V (·) for C0-semigroups ([17, Sec. 2.2]).
Recall that U(·) satisfies the relations U(0) = 0 and U(t + s) − U(t) = T (t)U(s), t, s ∈ R+, and V (·)
satisfies the relations V (0) = 0 and V (t + s) − V (t) = V (s)T (t), t, s ∈ R+.

The multiplicative and additive perturbation C0-families play an important role in the perturbation
theory of C0-cosine operator functions.

For example, using the multiplicative and additive perturbation C0-families, we can consider well-
posed statements of the Cauchy problem in the form

u′′(t) = A(1 − λF̂ (λ))u(t) + λ3F̂ (λ)u(t), t ∈ R+, u(0) = x, u′(0) = y.
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As is known, a C0-cosine operator function that is strongly (resp. uniformly) measurable on R+ is
strongly (resp. uniformly) measurable on R (see Sec. 2.1). The following theorem shows that multiplica-
tive and additive perturbation families have the same properties.

Theorem 2.2.1 ([239]). If a multiplicative perturbation family F (·) is strongly (resp. uniformly) mea-
surable on R+, then the function F (·) is strongly (resp. uniformly) continuous on R.

If an additive perturbation family G(·) is uniformly measurable on R+, then the function G(·) is
uniformly continuous on R.

Proof. First of all, the strong continuity of F (·)x on R+ implies the Lebesgue measurability of ‖F (·)x‖
on R+ (see [76]). Further, let us show that ‖F (·)x‖ is bounded on any compact subinterval [a, b] ⊂ R+
for any x ∈ E. Suppose the contrary. Then there exist x̃ ∈ E, a number τ > 0, and a sequence τn ∈ [a, b]
such that τn → τ and

‖F (τn)x̃‖ ≥ n as n → ∞.

By the measurability of ‖F (·)x̃‖, there exist a constant c1 and a Lebesgue measurable set Λ ⊂ [0, τ ] of
measure

µ(Λ) >
3

4
τ

such that

sup
t∈Λ

‖F (t)x̃‖ ≤ c1. (2.3)

Now, following [101], we set

Ak :=
τk
2
−

Λ ∩ [0, τk]

2
, Bk := Λ ∩ [0, τk/2] (2.4)

and

A =
τ

2
−

Λ

2
, B = Λ ∩ [0, τ/2].

First, µ(A∩B) > 0. To prove this, assume that µ(A∩B) = 0. Then µ(A)+µ(B) ≤ τ/2. But µ(A) = µ/2(Λ)

by the definition of the set A. This means that µ(Λ)+ 2µ(B) ≤ τ. Therefore,
3

4
τ < µ(Λ) ≤ τ −2µ(B), i.e.,

µ(B) ≤ τ/8. (2.5)

Write
Λ = (Λ ∩ [0, τ/2]) ∪ (Λ ∩ [τ/2, τ ]) = B ∪D,

where µ(Λ) = µ(B) + µ(D) with µ(D) ≤ τ/2. But

3

4
τ < µ(Λ) = µ(B) + µ(D) ≤ µ(B) + τ/2

implies µ(B) > τ/4, which contradicts (2.5). We have proved that µ(A ∩ B) ≥ δ > 0.
Now define the sets

E = A ∩ B, En = An ∩ Bn,

and
Hn = {τn − η, η ∈ En}.

Clearly, En → E as n → ∞, so that µ(Hn) > δ/2 for sufficiently large n. For the same n, if η ∈ En, then
η and τn − 2η belong to Λ by (2.4). Now, using (2.1) and (2.3), for η ∈ En, we obtain

n ≤ ‖F (τn)x̃‖ ≤ 2‖F (τn − η)x̃‖ + ‖F (τn − 2η)x̃‖ + 2‖C(τn − η)‖‖F (η)x̃‖

≤ 2‖F (τn − η)x̃‖ + c1 + 2Meωbc1.

Therefore,

‖F (t)x̃‖ ≥
n− c1 − 2Mc1e

ωβ

2
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for t ∈ Hn; denoting lim
n→∞

Hn = H∞, we have ‖F (t)x̃‖ = ∞ for t ∈ H∞ with µ(H∞) ≥ δ/2 > 0. This

contradicts the boundedness of ‖F (t)x̃‖ for each t.
We now want to prove that the strong measurability, together with the boundedness, implies the

continuity of F (·)x for each t ∈ R+ and each x ∈ E. For this purpose, we choose four positive numbers
α, β, ε, and γ such that β < t− ε and 0 < α < γ < β < t. We have from (2.1) that

F (t)x = 2F (t− γ/2)x− F (t− γ)x + 2C(t− γ/2, A)F (γ/2)x. (2.6)

The left-hand side, being independent of γ, is integrable in γ, and we have

(β − α)(F (t ± ε)x− F (t)x)

=

∫ β

α

2

(
F (t± ε− γ/2) − F (t− γ/2)x

)
dγ −

∫ β

α

(
F (t± ε− γ) − F (t− γ)

)
xdγ

+

∫ β

α

2

(
C(t± ε− γ/2, A) − C(t− γ/2, A)

)
F (γ/2)xdγ.

Therefore,

‖(F (t± ε) − F (t))x‖

≤
1

β − α

[ ∫ t−α/2

t−β/2
‖(F (ζ ± ε) − F (ζ))x‖dζ +

∫ t−α

t−β
‖(F (ζ ± ε) − F (ζ))x‖dζ

+ 2

∫ β

α

‖(C(t± ε− γ/2, A) − C(t− γ/2, A))F (γ/2)x‖ dγ

]
. (2.7)

By Theorem 3.8.3 from [76], ∫ t−α/2

t−β/2
→ 0 and

∫ t−α

t−β
→ 0 as ε → 0.

The last summand in (2.7) tends to zero by the Lebesgue theorem on the dominated convergence (see
[76, Theorem 3.7.9]).

We obtain that F (·)x is continuous for t ∈ R+. Replacing t by t + s in (2.1), we obtain that for all
t, s ∈ R+, the function

F (t)x = 2C(t + s,A)F (s)x− F (t + 2s)x + 2F (t + s)x

tends to 2C(s,A)F (s)x−F (2s)x+2F (s)x = F (0)x = 0 as t → 0+. Therefore, F (·) is strongly continuous
on R+ and hence on R, since F (·) is an even function. The proof for the case of uniform measurability is
analogous.

To prove the assertion for G(·), we can use the following writing of Eq. (2.2):

G(τn) = 2G(τn − η) −G(τn − 2η) + 2G(η)C(τn − η,A)

in operating the estimate of form (2.6). The proof is analogous.

Theorem 2.2.2. A multiplicative perturbation C0-family and an additive perturbation C0-family are
strongly continuous on R+ for a C0-cosine operator function C(·, A). Moreover, the uniform continu-
ity at 0 implies the uniform continuity on R+.

Proof. Following [101], we assume the contrary: the multiplicative perturbation family F (·) is not
strongly continuous at a certain point t0 ∈ R+, i.e., there exists x0 such that the nonincreasing sequence

Kn := sup
{
‖(F (t) − F (s))x0‖ : |t− t0|, |s− t0| ≤

t0
8n

}
converges to a certain K > 0 as n → ∞.
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We can choose sequences τn and σn such that

|τn − t0| ≤
t0
8n

, |σn − t0| ≤
t0
8n

,

and

‖(F (τn) − F (σn))x0‖ ≥ Kn −
1

n
, n ∈ N.

Clearly, |σn − τn| ≤
t0
4n

and |2τ4n − σ4n − t0| ≤
t0
8n

, n ∈ N. Therefore,

‖(F (σ4n) − F (2τ4n − σ4n))x0‖ ≤ Kn, n ∈ N.

Using identity (2.1) in the form

2(F (t + h) − F (t)) = (F (t + h) − F (t− h)) + 2C(t, A)F (h)

and setting t0 + h = σ4n and t0 = τ4n, we obtain

2‖(F (σ4n) − F (τ4n))x0‖ ≤ Kn + 2Meωt0‖F (σ4n − τ4n)x0‖.

Therefore,

2

(
K4n −

1

4n

)
≤ Kn + 2Meωt0‖F (σ4n − τ4n)x0‖,

and, thus,

K4n + (K4n −Kn) ≤
1

2n
+ 2Meωt0‖F (h)x0‖.

By the convergence F (h)x0 → 0 as h → 0 (recall that h = σ4n − τ4n) and K4n −Kn → 0 as n → ∞ we
have Kn → 0 as n → ∞, n ∈ N, which is a contradiction to our assumption that Kn → K, K > 0.

To prove the same assertion for G(·), we can use the identity

2(G(t + h) −G(t)) = (G(t + h) −G(t− h)) + 2G(t)(C(h,A) − I) + 2G(h),

which is obtained from (2.2) and Proposition 2.4.1 (i).

In the same way as in Proposition 2.3.2 in [17], we can prove the following assertion.

Proposition 2.2.1. Let a multiplicative perturbation family F (·) and a C0-cosine operator function
C(·, A) commute, i.e., F (t)C(t, A) = C(t, A)F (t) for all t ∈ R+. Then the multiplicative perturbation
C0-family F (·) is an additive perturbation family and it is commutative, i.e., F (t)F (s) = F (s)F (t) for all
s, t ∈ R.

2.3. Main Properties of C0-Cosine and C0-Sine Operator Functions

Definition 2.3.1. A C0-cosine operator function is defined as a one-parameter family of operators
{C(t), t ∈ R}, C(t) ∈ B(E), t ∈ R, having the following properties:

(i) C(t + s) + C(t− s) = 2C(t)C(s) for any t, s ∈ R (d’Alembert equation);
(ii) C(0) = I is the identity operator on E;
(iii) s- lim

h→0
C(h)x = x for any x ∈ E.

With a C0-cosine operator function C(·), we associate the C0-sine operator function

S(t)x :=

∫ t

0
C(s)xds, x ∈ E, t ∈ R, (2.8)

and the lineals

Ek := {x ∈ E : C(·)x ∈ Ck(R;E)}, k = 1, 2. (2.9)
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Definition 2.3.2. A linear operator A with the domain D(A) consisting of all x for which there exists
the limit

Ax := s- lim
h→0+

2
C(h) − I

h2
x (2.10)

is called an infinitesimal generator of a C0-cosine function C(·).

The property that A is a generator of a C0-cosine operator function C(·) is written as C(·, A) (and
S(·, A) for a C0-sine operator function S(·)).

Let us present a simplest example of a C0-cosine operator function.

Example 2.3.1. Let A be the operator of multiplication by a complex number on the space R. Then A
is the generator of the C0-cosine operator function (C(t, A)f)(s) = cos(it

√
A)f(s), t ∈ R.

Proposition 2.3.1 ([87]). Define the operator

A1x := s- lim
h→0

C(2h,A) − 2C(h,A) + I

h2
x

with a natural domain (i.e., on those x ∈ E at which this limit does exist). Then for x ∈ D(A1) ∩D(A),
we have Ax = A1x.

For a C0-cosine operator function C(·, A), we can also define the first generator

◦
Cx := s- lim

h→0+

C(h,A)x− x

h

with a natural domain.

Proposition 2.3.2 ([264]). For a C0-cosine operator function C(·, A), we have D(A) ⊆ D(
◦
C) and

◦
Cx = 0

for any x ∈ D(A).

Proposition 2.3.3 ([264]). The operators C(t, A), C(s,A), S(t, A), and S(s,A) commute for any t, s ∈
R.

Proposition 2.3.4. The C0-sine operator function S(·, A) is continuous in the uniform operator topology.

Proposition 2.3.5 ([264,272]). For all t, s ∈ R, we have the relations

(i) C(t, A) = C(−t, A), S(−t, A) = −S(t, A), S(0, A) = 0;

(ii) S(t + s,A) + S(t− s,A) = 2S(t, A)C(s,A);

(iii) S(t + s,A) = S(t, A)C(s,A) + S(s,A)C(t, A);

(iv) C(t + s,A) − C(t− s,A) = 2AS(t, A)S(s,A);

(v) C(2t, A) = 2C(t, A)2 − I, C(t, A)2 −AS(t, A)2 = I;

(vi) C((n + 1)t, A) = b0I + b1C(t, A) + ... + bn+1C
n+1(t, A),

where b0 + b1z + ... + bn+1z
n+1 is the Chebyshev polynomial of the first kind of degree n + 1.

Proposition 2.3.6 ([264]). For any C0-cosine operator function C(·, A), there exist constants M ≥ 1
and ω ≥ 0 such that for all t ∈ R, we have the estimate

‖C(t, A)‖ ≤ M cosh(ωt), t ∈ R, (2.11)

where cosh(ωt) :=
1

2

(
eωt + e−ωt

)
is the hyperbolic cosine.

Definition 2.3.3. The greatest lower bound of the numbers ω from (2.11) is called the type of a C0-cosine
operator function and is denoted by ωc(A).
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Proposition 2.3.7 ([207]). The minimum ω satisfying (2.11) for an appropriate constant Mω may not
exist, i.e., the greatest lower bound of ωc(A) is not attained in general.

Proposition 2.3.8 ([132,141,264]). Let an operator A generate a C0-cosine operator function C(t, A),
and let ‖C(t, A)‖ ≤ M cosh(ωt), t ∈ R. Then A ∈ G(M,ω2), the C0-semigroup exp(·A) is analytically
continued to the right half-plane, and

exp(tA) =
1

√
πt

∞∫
0

e−
s2

4tC(s,A)ds, t ∈ R+. (2.12)

Proposition 2.3.9. The representation of the analytic semigroup in Proposition 2.3.8 can be written in
the form

exp(tA)x =
1

2k
√
πt(k+1)/2

∫ ∞
0

Pk

(
s

2
√
t

)
e−

s2

4tCk(s)xds, t ∈ R+.

Here, Pk is a polynomial of degree k and Ck(t) =
t∫
0

(t− s)k−1

(k − 1)!
C(s,A) ds, where t ∈ R+, k ∈ N, and

C0(t) = C(t, A).

Remark 2.3.1 ([223]). There are examples of analytic C0-semigroups whose generators do not generate
C0-cosine operator functions.

Proposition 2.3.10 ([179]). Obviously, D(A) ⊆ E1 for A ∈ C(M,ω), and, therefore, the set E1 is dense
in E.

Proposition 2.3.11 ([274]). For any x ∈ E and t, s ∈ R, we have

(i) y :=

t∫
s

S(τ,A)xdτ ∈ D(A) and Ay = C(t, A)x− C(s,A)x; (2.13)

(ii) z :=

t∫
0

s∫
0

C(τ,A)C(ζ,A)xdτdζ ∈ D(A) and (2.14)

Az =
1

2

(
C(t + s,A) − C(t− s,A)

)
x; (2.15)

(iii) S(t, A)x ∈ E1. (2.16)

Proposition 2.3.12 ([274]). If elements x vary over the whole E, and the numbers t and s vary over R,

then the set of elements of the form y =
t∫
s

S(τ,A)xdτ is dense in E.

Proposition 2.3.13. For any x ∈ E, the following relations hold:

s- lim
t→0

t−1S(t, A)x = x and s- lim
t→0

2t−2
∫ t

0
S(τ,A)xdτ = x. (2.17)

Proposition 2.3.14 ([274]). If x ∈ E1, then for any t ∈ R,

(i) C(t, A)x ∈ E1, S(t, A)x ∈ D(A) and C ′(t, A)x = AS(t, A)x; (2.18)

(ii) s- lim
τ→0

AS(τ,A)x = 0 and S′′(t, A)x = AS(t, A)x. (2.19)
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Proposition 2.3.15 ([274]). Let x ∈ D(A). Then for all t ∈ R,

(i) C(t, A)x ∈ D(A) and C ′′(t, A)x = AC(t, A)x = C(t, A)Ax; (2.20)

(ii) S(t, A)x ∈ D(A) and S′′(t, A)x = AS(t, A)x = S(t, A)Ax. (2.21)

Proposition 2.3.16 ([272]). For all t, s ∈ R, the following relations hold:

(i) C(2t, A) = C(t, A)2 + C ′(t, A)S(t, A); (2.22)

(ii) C ′(t, A)S(s,A) = C ′(s,A)S(t, A); (2.23)

(iii) C(t + s,A) − C(t− s,A) = 2C ′(t, A)S(s,A); (2.24)

(iv) (C(t, A) − I)

∫ h

0
S(s,A)ds = (C(h,A) − I)

∫ t

0
S(s,A)ds; (2.25)

(v) (A− λ2I)

∫ t

0
sinh

(
λ(t− s)

)
C(s,A)ds = λ

(
C(t, A) − cosh(λt)I

)
; (2.26)

here, sinh(·) and cosh(·) are the hyperbolic sine and the hyperbolic cosine, respectively.

Proposition 2.3.17 ([134]). The domain of the generator of a C0-cosine function C(·, A) coincides with
E2, and for each x ∈ D(A),

Ax = s- lim
τ→0

C ′′(τ,A)x. (2.27)

Sometimes the generator of a C0-cosine operator function is defined by (2.27).
The set of generators of a C0-cosine operator function with bound (2.11) will be denoted by C(M,ω).

Proposition 2.3.18 ([264]). Let A,G ∈ C(M,ω). Then if D(A) ⊆ D(G) and Ax = Gx for all x ∈ D(A),
we have C(t, A) = C(t,G) for all t ∈ R.

Theorem 2.3.1 ([112,130,264,269]). For an operator A ∈ C(E) to be a generator of a C0-cosine operator
function, it is necessary and sufficient that for a certain constants M,ω ≥ 0, the resolvent (λ2I − A)−1

exist for Reλ > ω and the following inequalities hold:∥∥∥∥ dn

dλn

(
λ(λ2I −A)−1

)∥∥∥∥ ≤
Mn!

(Reλ− ω)n+1
, n ∈ N0. (2.28)

Remark 2.3.2 ([264]). Sometimes, estimate (2.28) is written in the form∥∥∥∥ dn

dλn

(
λ(λ2I −A)−1

)∥∥∥∥ ≤
Mn!

2

(
1

(Reλ− ω)n+1
+

1

(Reλ + ω)n+1

)
(2.29)

for all Reλ > ω, n ∈ N0.

In practice, conditions (2.28)–(2.29) turn out to be difficult to verify, and, therefore, other conditions
for generating a C0-cosine operator function are of interest.

Theorem 2.3.2 ([42]). An operator A ∈ C(E) is a generator of a C0-cosine operator function iff there
exist constants M, δ > 0, and ω such that

‖(λ2I −A)−1‖ ≤
M

|λ|(Reλ− ω)
for all Reλ > ω, (2.30)

and the following estimate holds uniformly in τ ∈ (0, δ):∥∥∥∥
ω+i∞∫

ω−i∞

eλ
2τ cosh(λt)λ(λ2I −A)−1xdλ

∥∥∥∥ ≤ ξ(t)‖x‖, t ∈ R+, (2.31)

where ξ(·) ∈ C(R).
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Remark 2.3.3. In connection with estimate (2.30), we note (see [57]) that for any fixed ε > 0, the

condition ‖(λ2I −A)−1‖ ≤
M

|λ|1+ε
, Reλ > ω, implies the boundedness of the spectrum σ(A).

Proposition 2.3.19 ([210]). In the case where A is a normal operator on a Hilbert space, it generates
a C0-cosine operator function if and only if the conditions for location of the spectrum hold, i.e., {z2 :
Re z > ω} ⊆ ρ(A) for a certain ω.

Proposition 2.3.20 ([272]). For Reλ > ωc(A), we have λ2 ∈ ρ(A) and

λ(λ2I −A)−1x =

∫ ∞
0

e−λtC(t, A)xdt, x ∈ E; (2.32)

(λ2I −A)−1x =

∫ ∞
0

e−λtS(t, A)xdt, x ∈ E. (2.33)

Proposition 2.3.21 ([134]). If x ∈ D(A3), y ∈ D(A), and ω > ωc(A), then

C(t, A)x = x +
t2

2!
Ax +

t4

4!
A2x +

1

2πi

ω+i∞∫
ω−i∞

eλtλ−3(λ2I −A)−1A3xdλ; (2.34)

C(t, A)y =
1

2πi

ω+i∞∫
ω−i∞

eλtλ(λ2I −A)−1y dλ, t ∈ R+. (2.35)

Writing the inverse Laplace transform in another form, we can obtain other analogous representations
of the operator functions C(·, A) and S(·, A).

Proposition 2.3.22 ([222]). Let x ∈ D(Ak) for a certain k ∈ N. Then for t ∈ R, the following Taylor
formula holds:

C(t, A)x = x +
t2

2!
Ax + ... +

t2k−2

(2k − 2)!
Ak−1x +

∫ t

0

(t− s)2k−1

(2k − 1)!
C(s,A)Akxds.

Proposition 2.3.23 ([166]). Let A ∈ C(M,ω), and let r ∈ N. Then(
C(t, A) − I

)r
= 2−r

2
r∑

j=1

(−1)r−jC2rr−jC(jt,A) + (−1)rC2rr I

 ,

(
C(t, A) − I

)r
x = Ar

∫ t

0

∫ t

0
...

∫ t

0

r∏
j=1

(t− sj)C(sj, A)xds1ds2...dsr

for any x ∈ E.

Proposition 2.3.24 ([225]). For any A ∈ C(M,ω), x ∈ Ẽ0, and t ∈ R the representation

C(t, A)x =
∞∑
k=0

t2kAkx/(2k)!

holds, and for each x̃ ∈ Ẽ0, the function t → C(t, A)x̃ can be continued in t up to a function analytic on
the whole complex plane.

Proposition 2.3.25 ([132]). The following Widder–Post formula holds:

C(t, A)x = lim
k→∞

(−1)k

k!

(
k

t

)k+1 dk

dλk
(λ(λ2I −A)−1x)

∣∣∣
λ= k

t

, t �= 0, x ∈ E, (2.36)

where the convergence is uniform in t from any compact set in R \ {0}.
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Proposition 2.3.26 ([289]). The expression N(λ, k) :=
dk

dλk

(
λ(λ2I − A)−1

)
from (2.36) can be repre-

sented in the form

(i) N(λ, k) = k!
(
λk+1 + C2k+1λ

k−1A + ... + Ck
k+1λA

k/2
)

(λ2I −A)−(k+1), k is even;

(ii) N(λ, k) = −k!
(
λk+1 + C2k+1λ

k−1A + ... + Ck
k+1λA

(k+1)/2
)

(λ2I −A)−(k+1), k is odd;

(iii) N(λ, k) =
k∑

j=k/2

(−1)j
(k + 1)!j!λ(2λ)2j−k

(k − j)!(2j − k + 1)!
(λ2I −A)−(j+1), k is even;

(iv) N(λ, k) =
k∑

j= k−1
2
+1

(−1)j
(k + 1)!j!λ(2λ)2j−k

(k − j)!(2j − k + 1)!
(λ2I −A)−(j+1), k is odd.

Proposition 2.3.27 ([260]). For a C0-cosine operator function C(·, A), C0-sine operator function
S(·, A), and any x ∈ E and t ∈ R, we have

(i) C(t, A)x = lim
k→∞

k∑
l=0

l∑
j=0

C2l2kC
j
l (−1)l−j

(
I −

( t

2k

)2
A

)−(2k−l+j)
x;

(ii) C(t, A)x = lim
k→∞

k∑
l=0

l∑
j=0

C2l2k+1C
j
l (−1)l−j

(
I −

(
t

2k + 1

)2
A

)−(2k+1−l+j)
x;

(iii) C(t, A)x = lim
n→∞

e−nt
∞∑

m=0

m∑
k=0

k∑
j=0

(nt)2m

(2m)!
C2k2mC

j
k(−1)k−j

×

(
I +

nt

2m− 2k + 1
(I − n−2A)−1

)
(I − n2A)−(2m−k+j)x;

(iv) S(t, A)x = lim
n→∞

t

n

n−1∑
m=0

m∑
k=0

k∑
j=0

C2k2m+1C
j
k(−1)k−j

(
I −

( t

2n

)2
A

)−(n+m+1−k+j)
x;

moreover, in all the cases, the convergence in t ∈ J ⊂ R is uniform. Here, J is an arbitrary closed
interval.

Proposition 2.3.28 ([260]). Under the conditions of Proposition 2.3.27, we have the following uniformly
in t ∈ [0, 1]:

C(t, A)x = lim
n→∞

n∑
m=0

m∑
k=0

k∑
j=0

C2m2n C2k2mC
j
k(−1)k−jt2m(1 − t)2n−2m−1

×

(
(1 − t) +

2n− 2m

2m− 2k + 1
t(I − (2n)−2A)−1

)−(2m−k+j)
x.

In [260], many other relations in an analogous form were also presented.
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Introduce the following notation:

St(A) :=
{
x ∈ E :

∞∑
k=1

‖Akx‖−
1
2k < ∞

}
are the Stieltjes vectors,

Up(A) :=
{
x ∈ E :

∞∑
k=1

t2k

(2k)!
‖Akx‖ < ∞ for a certain t ∈ R+

}
are semianalytic vectors, and

Upp(A) :=
{
x ∈ E :

∞∑
k=0

t2k

(2k)!
‖Akx‖ < ∞ for all t ∈ R+

}
are entire vectors.

Proposition 2.3.29 ([106]). Let A ∈ C(M,ω), and let Ẽ0 be constructed according to the C0-semigroup
exp(·A). Then Ẽ0 ⊆ Up(A).

Proposition 2.3.30 ([106]). Let A ∈ C(M,ω). We have the embeddings U(A) ⊆ Up(A) ⊆ St(A).

Proposition 2.3.31 ([106]). Let Upp(A) = E. Then the set of vectors x from D(A∞) having the property

‖Akx‖1/k = o(k) is dense in E.

Proposition 2.3.32 ([106]). Let A ∈ C(M,ω). Then U(A) ∩ Upp(A) = E.

Proposition 2.3.33 ([106]). Let Upp(A) = E and let there exist an operator G ∈ C(E) such that
(i) G−1 ∈ B(E);
(ii) G2 = A, and, moreover, the operators ±G are dissipative.
Then A ∈ C(M,ω) and C(t, A) = (exp(tG) + exp(−tG))/2, where G ∈ GR(1, 0).

Definition 2.3.4. A set of elements S ⊆ E is said to be total in E if the set of all its finite linear
combinations is dense in E.

Proposition 2.3.34 ([106]). Let A1 ∈ L(E) be closed, St(A1) be total in E, A2 ∈ C(M,ω), and let
A1 ⊆ A2. Then A1 = A2.

Proposition 2.3.35 ([106]). Let A be a closed, symmetric, and semibounded operator on a Hilbert space
H. Then the operator A is self-adjoint iff the set St(A) is total in H.

In [144], examples of nonlinear cosine operator functions are presented. However, in contrast to the
theory of nonlinear operator semigroups, there is no general theory of nonlinear cosine operator functions
for now.

2.4. Laplace Transform and Infinitesimal Operators

In this section, we present certain basic properties of the Laplace transform for C0-families of mul-
tiplicative perturbations F (·) and additive perturbations G(·). Let F̂ (·) and Ĝ(·) denote their Laplace
transforms, respectively.

Proposition 2.4.1 ([239]). Let F (·) be a C0-family of multiplicative perturbations and let G(·) be a family
of additive perturbations for a C0-cosine operator function C(·, A). The following properties hold:

(i) (C(t, A) − I)F (s) = (C(s,A) − I)F (t) and
G(s)(C(t, A) − I) = G(t)(C(s,A) − I) for t, s ∈ R+;
(ii) the functions F (·) and G(·) are exponentially bounded;

(iii)
d2

dt2
(λ(λ2I −A)−1F (t)x) = C(t, A)λ2F̂ (λ)x and

d2

dt2

(
G(t)λ(λ2I −A)−1x

)
= λ2Ĝ(λ)C(t, A)x for x ∈ E, λ > ω, and t ∈ R+;
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(iv)

F (t)x = (λ2I −A)

∫ t

0
S(s,A)λF̂ (λ)xds =

∫ t

0
S(s,A)λ3F̂ (λ)xds− (C(t, A) − I)λF̂ (λ)x

for x ∈ E, t ∈ R+;
(v)

G(t)x = λĜ(λ)(λ2I −A)

∫ t

0
S(s,A)xds = λ3Ĝ(λ)

∫ t

0
S(s,A)xds− λĜ(λ)(C(t, A) − I)x

for ∈ E, t ∈ R+.

Proof. Property (i) is easily implied by (2.1) and (2.2). To prove that the C0-family of multiplicative
perturbations F (·) is exponentially bounded, we choose L ≥ 1 and τ ∈ R+ such that ‖C(s,A)‖ ≤ L and
‖F (s)‖ ≤ L for 0 ≤ s ≤ τ. Using the relation

F (kτ + s) = 2F (kτ) − F (kτ − s) + 2C(kτ,A)F (s)

for 0 ≤ s ≤ τ , we have

‖F (τ + s)‖ ≤ ‖2F (τ)‖ + ‖F (τ − s)‖ + 2 Meτω‖F (s)‖

≤ 2L + L + 2MeτωL ≤ Meτω5L ≤ Me2τω1

≤ Meτω1e(τ+s)ω1 ,

where 5L ≤ eτω1 and ω ≤ ω1,

‖F (2τ + s)‖ ≤ 2‖F (2τ)‖ + ‖F (2τ − s)‖ + 2Me2τω1‖F (s)‖

≤ 2Me2τω1 + Me2τω1 + 2LMe2τω1 ≤ Me3τω1 ≤ τω1e
(2τ+s)ω1 .

By induction,

‖F (kτ + s)‖ ≤ 2‖F (kτ)‖ + ‖F (kτ − s)‖ + 2‖C(kτ,A)‖ ‖F (s)‖

≤ 2Mekτω1 + Mekτω1 + 2LMekτω1 ≤ 5LMekτω1

≤ Me(k+1)τω1 ≤ Meτω1e(kτ+s)ω1

for all s ∈ [0, τ ]. Therefore, ‖F (t)‖ ≤ M1e
ω1t for M1 = Meτω1 and all t ∈ R+.

To prove (iii), we set Θ(t, λ) = λ(λ2 − A)−1F (t) and Υ(t, λ) = G(t)λ(λ2 − A)−1, λ > ω, t ≥ 0. It
follows from (2.1) and (2.2) that

Θ′′t (t, λ) = C(t, A) lim
s→0

2s−2λ(λ2 −A)−1F (s) = C(t, A)Θ′′t (0, λ)

if Θ′′t (0, λ) exists, and

Υ′′t (t, λ) = lim
s→0

2s−2λ(λ2 −A)−1G(s)C(t, A) = Υ′′t (0, λ)C(t, A)

if Υ′′t (0, λ) exists. Therefore, it suffices to prove that Θ′′t (0, λ) = λ2F̂ (λ) and Υ′′t (0, λ) = λ2Ĝ(λ).
Taking the Laplace transform in t in (2.1), we have

(eλs − 2 + e−λs)F̂ (λ) − eλs
∫ s

0
e−λτF (τ)dτ + e−λs

∫ s

0
eλτF (τ)dτ = 2λ(λ2 −A)−1F (s) = 2Θ(s, λ).

Now, taking the derivative, we obtain

2Θ′s(s, λ) = λ(eλs − e−λs)F̂ (λ) − λeλs
∫ s

0
e−λτF (τ)dτ − λe−λs

∫ s

0
eλτF (τ)dτ,
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and differentiating once more, we have

2Θ′′ss(s, λ) = λ2(eλs + e−λs)F̂ (λ) − λ2eλs
∫ s

0
e−λτF (τ)dτ + λ2e−λs

∫ s

0
eλτF (τ)dτ − 2λF (s).

Therefore, Θ′s(0, λ) = 0 and Θ′′ss(0, λ) = λ2F̂ (λ). Analogously, we can show that Υ′s(0, λ) = 0 and

Υ′′ss(0, λ) = λ2Ĝ(λ).

Integrating Θ′′tt(t, λ) = C(t, A)λ2F̂ (λ) twice from zero up to t and using the relations F (0) = 0 and
Θ′t(0, λ) = 0, we obtain

λ(λ2I −A)−1F (t)x = Θ(t, λ)x =

∫ t

0
S(s,A)λ2F̂ (λ)xds, x ∈ E, (2.37)

and, therefore, assertion (iv) is proved. Assertion (v) is proved analogously.

Remark 2.4.1. If C(·, A) is uniformly continuous, then each C0-family of multiplicative perturbations
F (·) (resp. each C0-family of additive perturbations) of a C0-cosine operator function C(·, A) is also
uniformly continuous. This follows from formula (iv) (resp. (v)) and Proposition 2.4.1.

Definition 2.4.1. Let F (·) be a C0-family of multiplicative perturbations for a C0-cosine operator func-

tion C(·, A). The infinitesimal operator Ws of the family F (·) is defined as Wsx = s- lim
h→0

2

h2
F (h)x,

with a natural domain. The infinitesimal operator As of the pair (C(·, A), F (·)) is defined as Asx := s-

lim
h→0

2

h2
(C(h,A) + F (h) − I)x, with a natural domain. The infinitesimal operator Wc of a C0-family of

additive perturbations G(·) and the infinitesimal operator Ac of the pair G(·), C(·, A)) are defined in the
same way as

Wcx = s- lim
h→0

2

h2
G(h)x and Acx := s- lim

h→0

2

h2

(
C(h,A) + G(h) − I

)
x,

respectively.

Theorem 2.4.1 ([239]). The operators Ws and As defined above are closed and

(i) Ws = λ(λ2 −A)F̂ (λ), Reλ > ω;

(ii) As = A(I − λF̂ (λ)) + λ3F̂ (λ), Reλ > ω;
(iii)

As = A

(
I −

2

t2

∫ t

0

∫ τ

0
F (s)dsdτ

)
+

2

t2

(
λ2

∫ t

0

∫ τ

0
C(s,A)dsdτ − (C(t, A) − I)

)
λF̂ (λ),

where t ∈ R+, Reλ > ω.

Proof. Let Ah =
2

h2

(
C(h,A) + F (h) − I

)
. Assertion (iv) of Proposition 2.4.1 can be rewritten in the

form

2F (h)

h2
x =

2

h2

∫ h

0
S(s,A)λ3F̂ (λ)xds−

2

h2
(C(h,A) − I)λF̂ (λ)x,

Ahx = 2h−2
∫ h

0
S(s,A)λ3F̂ (λ)xds + 2h−2(C(h,A) − I)(I − λF̂ (λ))x.

Since the first term in the right-hand side of each of these relations converges to λ3F̂ (λ)x as h → 0 by
(2.17), we have

D(Ws) = D(AF̂ (λ)) and Wsx = λ(λ2 −A)F̂ (λ)x for all x ∈ D(Ws),

and also

D(As) = D
(
A(I − λF̂ (λ))

)
and Asx = λ3F̂ (λ)x + A(I − λF̂ (λ))x for all x ∈ D(As).
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Since A is closed and F̂ (λ) is bounded, it is easy to see that Ws and As are closed. Assertions (i) and (ii)
are proved.

To prove (iii), we use relation (2.1). For all x ∈ E and s ∈ R+, we have

2

h2

(
C(h,A) + F (h) − I

)
x =

2

h2

(
C(h,A) − I

)
x +

2

h2

(
F (s + h) − 2C(h,A)F (s) + F (s− h)

)
x

=
2

h2

(
C(h,A) − I

)(
I − F (s)

)
x +

1

h2

(
F (s + h) − 2F (s) + F (s− h)

)
x

=
2

h2
(C(h,A) − I)(I − F (s))x +

2

h2
C(s,A)F (h)x.

Integrating twice for any t ∈ R+, we obtain

2

h2
(C(h,A) + F (h) − I)x =

2

h2
(C(h,A) − I)

(
I −

2

t2

∫ t

0

∫ τ

0
F (s)dsdτ

)
x

+
2

t2
(λ2I −A)

∫ t

0

∫ τ

0
C(s,A)dsdτ(λ2I −A)−1

2

h2
F (h)x.

Since the last term converges to

2

t2
(λ2 −A)

∫ t

0

∫ τ

0
C(s,A) dsdτλF̂ (λ)x

as h → 0+ for all x ∈ E (see Proposition 2.4.1 (iii)), we obtain As in the form (iii).

Remark 2.4.2. The definition of the infinitesimal operator via the limit s- lim
h→0+

h−1F (h) has no sense.

Indeed, in this case, using (2.37), we obtain that such an operator is zero.

Generally speaking, the domains of the operators Ws and As are not necessarily dense in E. But
under certain conditions on F (·), the operator As not only has a dense domain but generates a C0-cosine
operator function. The domains of D(Wc) and D(Ac) always contain the dense set D(A).

Theorem 2.4.2 ([239]). The infinitesimal operators Wc and Ac have the following properties for Reλ >
ω:

(i) D(A) ⊆ D(Wc) and Wcx = λĜ(λ)(λ2 −A)x for all x ∈ D(A);
(ii) D(A) ⊆ D(Ac), and for x ∈ D(A), we have

Acx = Ax + Wcx =
(
I − λĜ(λ)

)
Ax + λ3Ĝ(λ)x;

(iii) D(A) ⊆ D(Ac), and for all x ∈ D(A) and t ∈ R+

Acx =
(
I −

2

t2

∫ t

0

∫ τ

0
G(s)dsdτ

)
Ax + λĜ(λ)

2

t2

(
λ2

∫ t

0

∫ τ

0
C(s,A)dsdτ − (C(t, A) − I)

)
x.

Moreover, if G(t) is uniformly continuous in t, then Ac is closed, D(Ac) = D(A), and Ac = (I−λĜ(λ))A+

λ3Ĝ(λ) for large Reλ. If Ĝ(λ) is invertible for a certain λ, then the operator Wc is closed, D(Wc) = D(A),

and Wc = Ac −A = λĜ(λ)(λ2I −A).

Proof. Let Ah =
2

h2

(
C(h,A) + G(h) − I

)
. By (v) of Proposition 2.4.1, we have

2G(h)

h2
x = λ3Ĝ(λ)

2

h2

∫ h

0
S(s,A)xds− λĜ(λ)

2

h2

(
C(h,A) − I

)
x,

Ahx = 2λ3Ĝ(λ)h−2
∫ h

0
S(s,A)xds + 2(I − λĜ(λ))h−2(C(h,A) − I)x.
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The first identity implies D(A) ⊆ D(Wc) and Wcx = λĜ(λ)(λ2I −A)x for x ∈ D(A).

The second identity implies D(A) ⊆ D(Ac) and Acx = Ax + Wcx = (I − λĜ(λ))Ax + λ3Ĝ(λ)x for
x ∈ D(A).

The proof of (iii) is similar to that of (iii) in Theorem 2.2.2.

If ‖G(t)‖ → 0 as t → 0, then ‖λĜ(λ)‖ → 0 as λ → ∞ (Proposition 2.4.2 (ii)). Therefore, the

operator I − λĜ(λ) is invertible for large λ, and we have D(Ac) ⊆ D(A). If {xn} is a sequence in D(A)

such that xn → x and (I − λĜ(λ))Axn → y, then Axn → (I − λĜ(λ))−1y, so that x ∈ D(A) and

Ax = (I − λĜ(λ))−1y.

Therefore, (I−λĜ(λ))A is closed, and hence Ac is also closed. The proofs of the assertions concerning
the operator Wc are going in the line as that for Ac. It follows from (2.1) that if ‖F (t)x‖ = o(t2) (t → 0+)
for all x ∈ E, then F ′′(t) = 0 for all t ∈ R+, so that F ′(·) ≡ F ′(0) = 0, and then F (·) ≡ F (0) = 0.

Similarly, it follows from (2.2) that the condition ‖G(t)x‖ = o(t2) (t → 0+) for all x ∈ E implies
G(·) ≡ 0. Therefore, the rate of convergence to 0 in the case of a nontrivial multiplicative perturbation
family or an additive perturbation family cannot exceed O(t2) for t → 0.

Proposition 2.4.2 ([239]). We have the following assertions concerning the rate of convergence to zero:

(i) for n = 0, 1, if ‖F (t)x‖ = o(tn) as t → 0+ for all x ∈ E, then ‖λnF̂ (λ)‖ = o(1) as λ → ∞ and

‖λn+1F̂ (λ)x‖ = o(1) as λ → ∞ for all x ∈ E;

(ii) for n = 0, 1, if ‖G(t)x‖ = o(tn) as t → 0+ for all x ∈ E, then ‖λnĜ(λ)‖ = o(1) as λ → ∞,

‖λn+1Ĝ(λ)x‖ = o(1) as λ → ∞ for all x ∈ E, and ‖λ3Ĝ(λ)x− (Ac −A)x‖ = o(λ−n) for all x ∈ D(A);

(iii) for n = 0, 1, if ‖F (t)‖ = o(tn) (resp. ‖G(t)‖ = o(tn)) as t → 0+, then ‖λn+1F̂ (λ)‖ = o(1) (resp.

‖λn+1Ĝ(λ)‖ = o(1)) as λ → ∞;

(iv) for n = 1, 2, if ‖F (t)‖ = O(tn) (t → 0+), then ‖λn+1F̂ (λ)‖ = O(1) as λ → ∞;

(v) for n = 1, 2, if ‖G(t)‖ = O(tn) as t → 0+, then ‖λn+1Ĝ(λ)‖ = O(1) as λ → ∞, and ‖λ3Ĝ(λ)x−
(Ac −A)x‖ = O(λ−n) for all x ∈ D(A);

(vi) if ‖F (t)‖ = O(t2) as t → 0, then w∗- lim
λ→∞

λ3F̂ (λ)∗x∗ = (A∗s −A∗)x∗ for any x∗ ∈ D(A∗).

Proof. We prove only (ii); the proof of assertions (i), (iii), (iv), and (v) is analogous. For a given ε > 0,
choose δ > 0 such that ‖G(t)x‖ ≤ εtn for all t ∈ [0, δ]. Then

‖λn+1Ĝ(λ)x‖ ≤ λn+1
(∫ δ

0
+

∫ ∞
δ

)
e−λt‖G(t)x‖dt

≤ ελn+1
∫ ∞
0

e−λttn dt + λn+1
∫ ∞
δ

e−λtMeωtdt‖x‖ ≤ ε/n! + M
λn+1

λ− ω
e−(λ−ω)δ‖x‖.

This implies ‖λn+1Ĝ(λ)x‖ = o(1) as λ → ∞ for x ∈ E. By the uniform boundedness principle, we have

‖λnĜ(λ)‖ = o(1) as λ → ∞. Now, we have from (ii) of Theorem 2.4.2 that ‖λ3Ĝ(λ)x−(Ac−A)x‖ = o(λ−n)
for all x ∈ D(A).

Chapter 3

REDUCTION OF THE CAUCHY PROBLEM FOR A SECOND ORDER EQUATION
TO THE CAUCHY PROBLEM FOR A SYSTEM OF FIRST ORDER EQUATIONS

As for ordinary differential equations, nth order equations can be reduced to a set of first order
equations by using matrix operators. The matrix operator theory is presented in [127] in detail. In the
present chapter, we consider only problems of reducing incomplete second order equations to a set of first
order equation.
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3.1. Kysinski Theorem

In a Banach space E, let us consider the following uniformly well-posed Cauchy problem:

u′′(t) = Au(t), t ∈ R; u(0) = u0, u′(0) = u1. (3.1)

Define the matrix operator A :=

(
0 I
A 0

)
: E1 × E → E1 × E acting on an element (x, y) ∈ E1 × E

by the formula A(x, y) = (y,Ax) that is given on the domain D(A) = D(A) × E1. In what follows, an

element (x, y) ∈ E1 ×E in the paragraph formulas will be written as the vector

(
x

y

)
.

Theorem 3.1.1 ([179]). The space E1 with the norm

‖x‖E1 := ‖x‖ + sup
0≤t≤1

‖C ′(t, A)x‖ (3.2)

is a Banach space, and the operator A generates the following C0-groups of operators on the Banach space
E1 ×E:

exp(tA)

(
x
y

)
:=

(
C(t, A) S(t, A)
AS(t, A) C(t, A)

)(
x
y

)
=

(
C(t, A)x + S(t, A)y
AS(t, A)x + C(t, A)y

)
, t ∈ R.

Proposition 3.1.1 ([287]). Let a C0-cosine operator function C(·, A) be given. Then E1 coincides with
the closure of D(A) in the norm

‖x‖∗ := ‖x‖ + sup
z>ω,n∈N

1

n!
(z − ω)n+1

∥∥∥∥∥ dn

dzn
A(z2I −A)−1x

∥∥∥∥∥. (3.3)

Proposition 3.1.2 ([179]). The resolvent of the operator A has the form

(λI −A)−1 =

(
λ(λ2I −A)−1 (λ2I −A)−1

A(λ2I −A)−1 λ(λ2I −A)−1

)
for λ2 ∈ ρ(A). (3.4)

Proposition 3.1.3 ([179]). Let u(·) be a solution of problem (3.1), and let v(t) := u′(t), t ∈ R. Then the

vector

(
u(·)
v(·)

)
is a solution of the following uniformly well-posed Cauchy problem in the Banach space

E1 ×E: (
u
v

)′
(t) = A

(
u
v

)
(t), t ∈ R;

(
u
v

)
(0) =

(
u0

u1

)
. (3.5)

Proposition 3.1.4 ([179]). Let a certain Banach space Ẽ1 be continuously and densely embedded into

the Banach space E, and, moreover, let D(Ã) ⊆ Ẽ1 for a certain operator Ã ∈ L(E). Then if in the space

Ẽ1 ×E, the Cauchy problem(
u
v

)′
(t) =

(
0 I

Ã 0

)(
u
v

)
(t) ≡ Ã

(
u
v

)
(t), t ∈ R,

(
u
v

)
(0) =

(
u0

u1

)
, (3.6)

is uniformly well posed and ρ(Ã) �= ∅, we have Ã ∈ C(M,ω).

Proposition 3.1.5 ([179]). Under the conditions of Proposition 3.1.4, the C0-semigroup corresponding
to problem (3.6) on the space Ẽ1 ×E is represented in the form

exp(tÃ) :=

(
G11(t) G12(t)
G21(t) G22(t)

)
, t ∈ R+, (3.7)

where the family G22(·) is a C0-cosine operator function C(·, A) and coincides with G11(·) on Ẽ1.
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Proposition 3.1.6 ([179]). Under the conditions of Proposition 3.1.4, the following relations hold for

x ∈ E and y ∈ Ẽ1:

G12(t)x = S(t, A)x and G21(t)y = C ′(t, A)y = AS(t, A)y, t ∈ R.

Proposition 3.1.7 ([179]). The spaces Ẽ1 and E1 coincide with accuracy up to a norm equivalence.

3.2. Conditions (K) and (F)

However, we note that to study problem (3.1) by reducing it to system (3.5) is very inconvenient,
since the space E1 is defined either through the C0-cosine operator function C(·, A) or through infinitely
many powers of the resolvent. As a rule, we have only the information about the operator A. Therefore,
certain additional conditions that allows us to reduce problem (3.1) to a system without use of the space
E1 are of interest.

Proposition 3.2.1 ([274]). Let the space E be Hilbert, and let the operator A be self-adjoint and negative-
definite. Then A ∈ C(M,ω), and the corresponding space E1 coincides with D((−A)1/2).

Let the uniformly well-posed problem (3.1) have the form

u′′(t) = B2u(t); t ∈ R, u(0) = u0, u′(0) = u1, (3.8)

where B ∈ C(E).

Definition 3.2.1. We say that a solution u(·) of problem (3.8) satisfies Condition (K) if u′(·) ∈

C
(

[0, T ];D(B)
)

.

Proposition 3.2.2 ([47]). Problem (3.8) has a unique solution satisfying Condition (K) iff the following
Cauchy problem is uniformly well posed on the space E ×E:(

u
v

)′
(t) =

(
0 B

B 0

)(
u
v

)
(t), t ∈ R,

(
u
v

)
(0) =

(
u0
v0

)
. (3.9)

An analog of Condition (K), which allows us to simplify the study of problem (3.1) by using C0-
semigroups, is the following Condition (F).

Definition 3.2.2. A C0-cosine operator function C(·, A) satisfies Condition (F) if the following conditions
hold:

(i) there exists B ∈ C(E) such that B2 = A, and B commutes with any operator from B(E)
commuting with A;

(ii) S(t, A) maps E into D(B) for any t ∈ R;
(iii) the function BS(t, A)x is continuous in t ∈ R for any fixed x ∈ E.

Proposition 3.2.3 ([134]). Under Condition (F ), for each t ∈ R, we have BS(t, A) ∈ B(E) and D(B) ⊆
E1 .

Proposition 3.2.4 ([134]). There exist a Banach space E and a C0-cosine operator function C(·, A)
(even uniformly bounded) such that Condition (F ) does not hold.

Proposition 3.2.5 ([134]). Via the shift Ab := A− b2I for b > ωc(A), we can always construct operators
Ab and Bb such that B2b = Ab and Bb commutes with any operator from B(E) commuting with Ab.

Proposition 3.2.6 ([133]). The operator Bb in Proposition 3.2.5 can be constructed, e.g., as follows:

Bbx :=
−i

π

∞∫
0

λ−1/2(λI −Ab)
−1(−Abx)dλ.
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Theorem 3.2.1 ([272]). Let A and B be operators satisfying condition (i) in Definition 3.2.2, and let
0 ∈ ρ(B). The following conditions are equivalent:

(i) the C0-cosine operator function C(·, A) satisfies Condition (F);
(ii) the operator B generates a C0-semigroup exp(·B) on E;

(iii) the operator

(
0 B

B 0

)
with the domain D(A) ×D(B) generates a C0-group on E ×E;

(iv) the operator A :=

(
0 I
A 0

)
with the domain D(A) ×D(B) generates a C0-group exp(·A) on

D(B) ×E, where D(B) is the Banach space of elements D(B) endowed with the graph norm;
(v) the embedding D(B) ⊆ E1 holds;
(vi) D(B) = E1.

Proposition 3.2.7 ([103]). Let A ∈ C(M, 0), and let E be a UMD space. Then Condition (F) holds.

Proposition 3.2.8 ([288]). The following condition is equivalent to conditions (i)–(vi) of Theorem 3.2.1:
D(B) is dense in E, and there exist constants M > 0 and ω ≥ 0 such that λ2 ∈ ρ(A) for any λ > ω, the
operator functions λ(λ2I − A)−1 and B(λ2I − A)−1 are strongly infinitely many times differentiable for
λ > ω, and the following estimates hold for any m ∈ N0:∥∥∥∥∥(λ− ω)m+1

m!

(
d

dλ

)m(
λ(λ2I −A)−1

)∥∥∥∥∥ ≤ M,∥∥∥∥∥(λ− ω)m+1

m!

(
d

dλ

)m(
B(λ2I −A)−1

)∥∥∥∥∥ ≤ M.

Proposition 3.2.9 ([272]). Under the conditions of Theorem 3.2.1, for t ∈ R, we have

(i) exp(tB) = C(t, A) +BS(t, A), C(t, A) =
(

exp(tB) + exp(−tB)
)
/2;

(ii) exp(tA) =

(
B−1 0

0 I

)
exp

(
t

(
0 B

B 0

))(
B 0
0 I

)
;

(iii) exp(tA)

(
x
y

)
=

(
C(t, A)x + S(t, A)y
AS(t, A)x + C(t, A)y

)
,

(
x
y

)
∈ D(B) ×E.

In applications, there often arises the following system of the special form:{
u′(t) = −A0u(t) + Bv(t), u(0) = x,

v′(t) = Cu(t) −A1v(t), v(0) = y,

on the space H = H0 ×H1 with linear operators

A0 : D(A0) ⊆ H0 → H0, A1 : D(A1) ⊆ H1 → H1,

B : D(B) ⊆ H1 → H0, C : D(C) ⊆ H0 → H1.

The corresponding matrix operator A is defined as follows:

A =

(
−A0 B
C −A1

)
on H with

D(A) =
(
D(A0) ∩D(C)

)
×

(
D(A1) ∩D(B)

)
.

Theorem 3.2.2 ([195]). Let exp(t,−A0) and exp(t,−A1) be contractive C0-semigroups on H0 and H1,

respectively, and let B and C be closed, and, moreover, D(A0) ∩D(C) = H0 and D(A1) ∩D(B) = H1.
Also, let Re{〈A0x, x〉+〈A1y, y〉−〈By, x〉−〈Cx, y〉} ≥ 0 for any x ∈ D(A0)∩D(C) and y ∈ D(A1)∩D(B).
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Then the following conditions are equivalent:
(i) A generates a contractive C0-semigroup on H;
(ii) for any λ > 0, we have

(λI + A0 −B(λI + A1)
−1C)−1 ∈ B(H0), (λI + A1 − C(λI + A0)

−1B)−1 ∈ B(H1);

(iii) assertions (ii) hold for a certain λ > 0;
(iv) for any λ > 0, the operators −(A0 − B(λI + A1)

−1C) and −(A1 − C(λI + A0)
−1B) generate

contractive C0-semigroups on H0 and H1, respectively;
(v) assertions (iv) hold for a certain λ > 0.

Also, in [195], the conditions under which the operator A generates an exponentially stable, differ-
entiable, and analytic C0-semigroup belonging to the Gevrey class with δ > 0 were obtained.

Chapter 4

INTERPOLATION

The interpolation theory considerably increases the total volume of results in the theory of partial
differential equations. We will mostly interest in two global directions: applications to coercive inequal-
ities, which often do not hold in the traditional spaces, and applications to the rate of convergence of
approximative methods depending on the smoothness of initial data; see [153]. These aspects will be
presented in forthcoming surveys in more detail.

4.1. Generalities

Let X and Y be two complex Banach spaces continuously embedded in a Hausdorff topological vector
space E, i.e., X ⊂✲ E and Y ⊂✲ E. Such Banach spaces X and Y are called an interpolation pair, which
is denoted by {X,Y }.

Proposition 4.1.1 ([9]). Let {X,Y } be an interpolation pair. Then X+Y and X∩Y are Banach spaces
with the norms

‖x‖X∩Y = max(‖x‖X , ‖x‖Y ), ‖x‖X+Y = inf
x=x0+x1

x0∈X, x1∈Y

{‖x0‖X , ‖x1‖Y },

respectively.

Obviously, if Y ⊂✲ X, then X ∩ Y = Y and X + Y = X. In such a case, it is natural to set E = X,
which usually holds in applications.

Definition 4.1.1. For any t ∈ R+ and an interpolation pair {X0,X1}, we define the so-called Peetre
K-functional

K(t, x;X0,X1) = inf
x=x0+x1,

x0∈X0,x1∈X1

(‖x0‖X0 + t ‖x1‖X1)

for any x ∈ X0 + X1.

Sometimes, one merely writes K(t, x) if the choice of the spaces X0 and X1 is clear.

Definition 4.1.2. The interpolation space (X0,X1)θ,q, 0 ≤ θ ≤ 1, 1 ≤ q < ∞, constructed according to
an interpolation pair {X0,X1} by using the K-method, is the space of all elements x ∈ X0+X1 for which
the following norm is finite:

‖x‖(X0,X1)θ,q =

(∫ ∞
0

(
t−θK(t, x)

)q
dt

) 1
q

.

32



In the case q = ∞, instead of (X0,X1)θ,∞, one usually writes (X0,X1)θ and defines the norm as

‖x‖θ = sup
0<t<∞

t−θK(t, x).

The interpolation space with q = ∞ is of a specific interest in considering approximations of C0-
semigroups of operators and C0-cosine operator functions by using the Favard classes.

Along with the K-functional, it is possible to use other constructions for constructing interpolation
spaces. For more detail, see, e.g., [9, 73].

Definition 4.1.3. We say that a space E ∈ Kθ(X0,X1), if it is continuously embedded in (X0,X1)θ, i.e.,
K(t, x) ≤ ctθ‖x‖E for any x ∈ E .

In connection with Definition 4.1.3, for an interpolation pair {X0,X1}, it is useful to set

Jj(X0,X1) ∩Kj(X0,X1) = {Xj}, j = 0, 1.

Definition 4.1.4. A Banach space [X0,X1]θ constructed by using the complex interpolation method is
called the interpolation space corresponding to an interpolation pair {X0,X1}.

Definition 4.1.5. Let Ω be an open set in Rd, m ∈ N0, and let 1 ≤ q, p ≤ ∞. Let σ = m + θ, where
0 < θ ≤ 1.

We set ∆yf(x) := f(x+y)−f(x), ∆2yf(x) := f(x+2y)−2f(x+y)+f(x), and Ωk,y :=
k⋂

j=0
(Ω−jy) =

{x : x + jy ∈ Ω for j = 0, k}.
The Besov space Bσ

p,q(Ω, E) is defined as the space of all functions f from Wm
p (Ω;E), for which the

seminorm

|f |
Bσp,q

(
Ω;E

) :=
∑
|α|=m

‖|y|−θ{‖∆k
y∂

α
x f(x)‖Lp(Ωk,y ;E)}‖Lq∗(Rd)

is finite for k = 1 or k = 2 when 0 < θ < 1 or θ = 1, respectively.
The norm of the Besov space is defined as follows:

‖f‖
Bσp,q

(
Ω;E

) := ‖f‖
Lp
(
Ω;E

) + |f |
Bσp,q

(
Ω;E

).
Here Lp

∗(Ω) is an Lp(Ω) space with the measure |x|−d dx, Ω ⊆ Rd.

Theorem 4.1.1 ([219]). Let a, b < ∞. Then

(i) for σ, τ ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞, in the case σ −
1

p1
> τ −

1

p2
or σ −

1

p1
= τ −

1

p2
and q1 ≤ q2, we

have Bσ
p1,q1((a, b), E) ⊂✲ Bτ

p2,q2((a, b), E);

(ii) Bm
p,1((a, b), E) ⊂ Wm

p ((a, b), E) ⊆ Bm
p,∞

(
(a, b), E

)
for any m ∈ N.

In particular, Bm
∞,1

(
(a, b), E

)
⊂ Cm

(
(a, b), E

)
.

4.2. Interpolation in the C0-Semigroup Theory

Recall that by D(Am) we denote the Banach space of elements x ∈ D(Am) endowed with the norm
‖x‖D(Am) = ‖x‖ + ‖Amx‖.

Theorem 4.2.1 ([73]). Let m ∈ N, 0 < θ < 1, 1 ≤ p < ∞ and k, l ∈ Z with 0 ≤ k < s = θm, l > s− k.
Then

(i) for A ∈ G(M,ω) and 0 < δ < ∞,

(E,D(Am))θ,p =
{
x ∈ E : ‖x‖

(k,l,δ)
(E,D(Am))θ,p

< ∞
}
,
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where

‖x‖
(k,l,δ)
(E,D(Am))θ,p

= ‖x‖E +

(∫ δ

0
‖t−(s−k)(exp(tA) − I)lAkx‖pE

dt

t

) 1
p

,

and all these norms are equivalent to the norm ‖ · ‖(E,D(Am))θ,p ;

(ii) if ω < 0, then δ = ∞ is an admissible value in the definition of the norm.

Definition 4.2.1. An operator A ∈ C(E) is said to be positive if (−∞, 0] ⊆ ρ(A) and there exists a
number C > 0 such that

‖(A− λI)−1‖ ≤
C

1 + |λ|
for λ ∈ (−∞, 0].

Note that in the case A ∈ G(M,ω) with ω < 0, the operator −A is positive.

Theorem 4.2.2 ([73]). Let −A be positive, and let m ∈ N, 0 < θ < 1, 1 ≤ p ≤ ∞. Then

(E,D(Am))θ,p =

{
x ∈ E : ‖x‖∗ =

(∫ ∞
0

(tθm‖Am(tI + A)−mx‖E)p
dt

t

) 1
p
< ∞

}
;

moreover, the norm ‖ · ‖∗ is equivalent to the norm of the space (E,D(Am))θ,p.

Theorem 4.2.3 ([73]). Let −A be a positive operator. Then
(i) if j,m ∈ N and 1 ≤ j ≤ m, then

(E,D(Am))j/m,1 ⊆ D(Aj) ⊆ (E,D(Am))j/m,∞;

(ii) if m ∈ N, 0 < θ < 1, 1 ≤ p ≤ ∞, and k, l ∈ Z, 0 ≤ k < s = mθ, l > s− k, then

(E,D(Am))θ,p =

{
x ∈ E :

(∫ ∞
0

(
ts−k‖Al(tI + A)−lAkx‖E

)p dt

t

) 1
p

< ∞

}
;

(iii) if A ∈ H(M,ω) with ω < 0, then

(E,D(Am))θ,p =

{
x ∈ E : ‖x‖∗∗ =

(∫ ∞
0

(
tm−θm‖Am exp(tA)x‖E

)p dt

t

) 1
p

< ∞

}
,

where ‖ · ‖∗∗ is a norm equivalent to the norm of the space (E,D(Am))θ,p.

Proposition 4.2.1 ([73]). Let A be a positive operator, and let σ ∈ R+, k,m ∈ Z, k ≥ 0, 0 < σ < m.
Then for complex numbers −k < Re z ≤ σ − k and x ∈ (E,D(Am))σ/m,p, the integral

Az
σx =

Γ(m)

Γ(z + m)Γ(m− k − z)

∫ ∞
0

λz+k−1Am−k(A + λI)−mxdλ

where Γ(m) :=
∞∫
0

e−mttm−1 dt is the gamma-function, converges. The operator Az
σ is closable and is

independent of σ.

Definition 4.2.2. Let A be a positive operator, and let z ∈ C. The fractional power Az of the operator
A is defined as the closure of the operator Az

σ.

Theorem 4.2.4 ([46]). Let A be a positive operator. Then
(i) if m ∈ N, Re α,Re β < m, then

AαAβx = AβAαx for x ∈ D(A2m);

(ii) if Re α < 0, then Aα is a continuous operator and A−αAα = I;
(iii) if Re α,Re β > 0, then AαAβ = Aα+β;
(iv) if m ∈ N and 0 < Re α < m, then

(E,D(Am))Re α
m

,1 ⊆ D(Aα) ⊆ (E,D(Am))Reα
m

,∞;
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(v) if 0 < Reα < Reβ < ∞ and 1 ≤ p ≤ ∞, 0 < θ < 1, then

(E,D(Aα))θ,p = (E,D(Aβ))Reα
Re β

θ,p.

Proposition 4.2.2 ([73]). Let A be a positive operator, and let there exist constants ε and C such that
Ait are operators uniformly bounded near zero, i.e., ‖Ait‖ ≤ C for −ε ≤ t ≤ ε. If 0 ≤ Reα < Reβ < ∞
and 0 < θ < 1, then [

D(Aα),D(Aβ)
]
θ

= D
(
Aα(1−θ)+βθ

)
.

Proposition 4.2.3 ([97]). Let A ∈ G(M, 0), and let 0 < α < 1. Then the following conditions are
equivalent for x ∈ E:

(i) x ∈ D((−A)α);
(ii) there exists

s- lim
ε→0

1

Γ(−α)

∫ ∞
ε

t−α−1(exp(tA) − I)xdt.

Proposition 4.2.4 ([97]). Let τ > 0, A ∈ G(M, 0), and let

Uβ(τ)x :=

∫ τ

0
(τ − s)β−1 exp(sA)xds

for 0 < α < β ≤ 1, x ∈ E. Then Uβ(τ)x ∈ D((−A)α).

Proposition 4.2.5 ([97]). Let A ∈ G(M, 0) be a normal operator on a Hilbert space E = H. Then for
the operator function Cα

t [exp(·A)], we have Cα
t [exp(·A)]E ⊆ D((−A)α) for 0 < α < 1, and the operator

(−A)αCα
t [exp(·A)] is strongly continuous.

Theorem 4.2.5 (reiteration theorem, [73]). Let A be a positive operator satisfying the conditions of
Proposition 4.2.2, and let Reα > 0. Then for 1 ≤ p < ∞, 0 < θ0 < θ1 < 1, and 0 < λ < 1,[

(E,D(Aα)θ0,p, (E,D(Aα)θ1,p

]
λ

=
(
E,D(Aα

)
(1−λ)θ0+λθ1,p

.

As was already noted, if A ∈ H(ω, β) with ω ≤ 0, then the operator −A is positive. At the same
time, the construction of fractional powers is simplified in this case. The location of the spectrum of the
operator A ∈ H(ω, β) is as follows:

Fig. 1
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and ‖(λI −A)−1‖ ≤
M

|λ− ω|
for λ ∈ Γ. Assume that ω = 0. Then we can set

(−A)−α =
1

2πi

∫
Γ
λ−α(λI + A)−1 dλ, 0 < α < ∞,

where the contour Γ in the integral is going around upward; see Fig. 1.
The operators (−A)−α are bounded, and for integer α = m ∈ N, we have (−A)α = (−A)−n.

Moreover, the operators (−A)−α(−A)−β = (−A)−(α+β) form a semigroup, ‖(−A)−α‖ ≤ const, 0 ≤ Reα ≤
1, and this semigroup is strongly continuous at zero, i.e., (−A)−αx → x as α → 0 for any x ∈ E. Complex
powers are defined by the formula

(−A)z =
1

2πi

∫
Γ
λ−z(λI + A)−1 dλ, Re z < 0. (4.1)

Proposition 4.2.6 ([73]). Let A ∈ H(ω, β). Then {(−A)z}Re z≤0 is a C0-semigroup analytic in the open
left half-plane. As the inverses to bounded operators, the operators (−A)α, 0 < α < ∞, are closed and,

moreover, D((−A)α) = E.

Proposition 4.2.7 ([47] (momentum inequality)). Let A be positive. Then for any α < β < γ, we have

‖Aβx‖ ≤ C(α, β, γ)‖Aγx‖
β−α
γ−α · ‖Aαx‖

γ−β
γ−α for x ∈ D(Aγ).

In [89,211], fractional powers of a positive operator A are defined as follows:

if A is bounded, then Aα :=
sin(απ)

π

∞∫
0

µα−1(µI + A)−1xdµ, 0 < Reα < 1;

if A is unbounded and 0 ∈ ρ(A), then Aα := [(A−1)α]−1;
if A is unbounded and 0 ∈ σ(A), then Aαx := lim

ε→0+
(A + εI)αx on those x at which the limit exists.

With such a definition, it is easy to see that A1 = A, and the case where D(A) �= E and 0 ∈ σ(A) turns
out to be appropriate. As was shown in [211], it is easy to prove the relations AαAβ = AβAα = Aα+β ,

(Aα)β = Aαβ , and the integral expansions for the expression Aαx−
n∑

p=0
Cα
p (−1)pεp(A+εI)α−px, where Cα

p

are binomial coefficients. Moreover, the example showing that D(As+it1) \ D(As+it2) �= ∅ for any s > 0
and t1 �= t2 was presented in this work.

Proposition 4.2.8 ([253]). The following Landau inequalities hold for A ∈ G(M, 0):

‖A2x‖3 ≤ 3‖x‖‖A3x‖2, ‖A2x‖3 ≤
72

25
‖x‖‖A3x‖2, ‖Ax‖3 ≤

81

40
‖x‖2‖A3x‖,

‖A3x‖4 ≤ C‖x‖‖A4x‖3, ‖A2x‖4 ≤ C‖x‖2‖A4x‖2, ‖Ax‖4 ≤ C‖x‖3‖A4x‖.

Theorem 4.2.6 ([47]). Let A be positive. Then the operators −Aα generate analytic C0-semigroups for

α ≤
1

2
.

Theorem 4.2.7 ([47]). Let A ∈ H(ω, β) with ω < 0. Then the operator −(−A)α is a generator of an
analytic C0-semigroup for any 0 ≤ α ≤ 1.

Theorem 4.2.8 ([125]). Let α > 0, and let A ∈ H(ω, π/2); moreover, let

‖ exp(zA)‖ ≤ M

(
|z|

Re z

)α

for Re z > 0.

Then the operator −(−A)1/2 generates an analytic C0-semigroup analytic in the right half-plane and

‖ exp(−z(−A)1/2)‖ ≤ M ′

(
|z|

Re z

)α+ 1
2

for Re z > 0.
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Moreover, A generates a β times integrated cosine operator function for β > α +
1

2
.

Proposition 4.2.9 ([65]). Let A ∈ G(M, 0). Then −(−A)1/2 generates an analytic C0-semigroup, and
the following representations hold for t > 0:

exp(−t(−A)1/2) =
t

2
√
π

∫ ∞
0

e−
t2

4s exp(sA)
ds

s3/2
,

exp(−t(−A)1/2) =
t1/2

2
√
π

∫ ∞
0

e−
t
4s exp(tsA)

ds

s3/2
,

exp(−t(−A)1/2) =
t1/2

2
√
π

∫ ∞
0

e−
ts
4 exp(tA/s)

ds

s1/2
.

Imaginary powers of an operator −A ∈ H(ω, β) with the property 0 ∈ ρ(A) can be defined, e.g., as

(A)is = gs(A)(A + I)2A−1, (4.2)

where gs(λ) = λis
λ

(1 + λ)2
and gs(A) =

1

2πi

∫
Γ

gs(λ)(λI −A)−1 dλ (see [188]).

4.3. Interpolation in the Theory of C0-Cosine Operator Functions

As is known, an operator A ∈ C(M, 0) also defines an analytic C0-semigroup, and, therefore, following
the previous section, we can define its fractional powers Az. However, we present certain concrete relations
that take into account the specific character of a cosine operator functions.

So, by (2.12), we can follow the previous section, and expressing the resolvent through the cosine
operator function (see (2.32)), for b > ωc(A) we obtain (see [130])

(b2I −A)−αx =
23/2−αb1/2−α
√
πΓ(α)

∫ ∞
0

sα−1/2Kα−1/2(bs)C(s,A)xds (4.3)

for α > 0, where Kν is the Mcdonald’s function, which is represented through the Bessel function Iν(t)
as follows:

Kν(t) =
π

2

I−ν(t) − Iν(t)

sin(πν)
for ν �= ±π,±2π, ....

Let A ∈ C(M, 0). Then for k ∈ N and k − 1 < α < k, we have the following relation useful in the
interpolation theory:

(−A)αx =
1

Cα,k

∫ ∞
0

t−2α(C(t, A) − I)kx
dt

t
, x ∈ D(Ak),

where Cα,k =
∞∫
0

t−2α(cos(t) − 1)k
dt

t
.

Proposition 4.3.1 ([166]). Let r ∈ N, A ∈ C(M, 0), and let 0 < α < r. An element x ∈ D((−A)α) iff
there exists the limit

s- lim
ε→0+

1

Cα,r

∫ ∞
ε

t−2α(C(t, A) − I)rx
dt

t
;

in this case, this limit is −(−A)αx.

Proposition 4.3.2 ([166]). Let r ∈ N, A ∈ C(M, 0), and let 0 < α < r. An element x∗ ∈ D((−A)∗)
belongs to D((−A)�)α) iff x∗ ∈ E� and there exists the limit

w∗- lim
ε→0+

1

Cα,r

∫ ∞
ε

t−2α(C(t, A�) − I)rx∗
dt

t
;

in this case, this limit is −(−A�)αx∗.
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In [130], Fattorini has studied the relation between the domains of fractional powers of operators
with a set of elements on which C0-semigroups have fractional derivatives. Recall that a C0-semigroup of
operators has a continuous fractional derivative of order α ≥ 0 for t ≥ 0 iff there exist β > ω(A) and a
continuous function fβ(·), with the function sα‖fβ(s)‖ integrable in s ≥ 0, and, moreover,

e−βt exp(tA)x =
eiπα

Γ(α)

∫ ∞
t

(s− t)α−1fβ(s) ds, t ≥ 0. (4.4)

Denote by Eα,β the set of elements x ∈ E satisfying (4.4), and by Fα the set D((bI −A)α) for b ≥ ω(A).

Proposition 4.3.3 ([130]). Let α ≥ 0, and let A ∈ G(M,ω). Then Eα,β = Eα, β > ω.

For C0-groups of operators, the case of the previous proposition is complemented by one more relation
E−α,β = F−α , β > ω, where F−α = D((bI + A)α) and E−α,β corresponds to exp(·A).

Proposition 4.3.4 ([130]). Let τ ≥ 0, x ∈ E, and let 0 < α < β ≤ 1. Then
τ∫
0

(τ − s)2β−1C(s,A)xds ∈

D((−A)α).

As Fattorini has shown, it is not possible to set α = β = 1/2 in the last proposition. This forces the
appearance of Condition (F); see p. 30.

For a cosine operator function C(·, A), let us define the modulus of continuity as follows:

ωr(t
r, x) := sup

|s|≤t
‖(C(s,A) − I)rx‖E , x ∈ E,

where r ∈ N. Also, we set K(t, x;E,U) = inf
g∈U

{‖x− g‖E + t|g|U}.

Proposition 4.3.5 ([166]). Let r ∈ N, and let 0 < t ≤ δ < ∞. Then there exist constants C1, C2 > 0
such that

C1K(t2r, x;E,D(Ar)) ≤ ωr(t
r, x) + min(1, t2r)‖x‖E ≤ C2K(t2r, x;E,D(Ar)),

where K is the Peetre functional.
If A ∈ C(M, 0), we can set δ = ∞.

As for semigroups of operators, define (E,D(A))θ,q as the space with the norm

‖x‖(E,D(A))θ,q :=

(∫ ∞
0

(t−θK(tr, x)q dt

)1/q
.

In the case q = ∞, the norm is given by

‖x‖(E,D(A))θ,∞ = ‖x‖E + sup
t∈R+

(t−2αω1(t, x)).

Theorem 4.3.1 ([166]). Let 0 < α < r, r ∈ N, 1 ≤ q < ∞ (or resp. 0 ≤ α ≤ r, q = ∞). Then the
intermediate spaces (E,D(Ar))θ,q with θ = α/r and 0 < δ < ∞ have the following equivalent norms:

(i)

(∫ δ

0
t−α/rK(t, x;E;D(Ar))q

dt

t

)1/q
;

(ii) ‖x‖E +

(∫ δ

0
(t−2αωr(t

r, x))q
dt

t

)1/q
;

(iii) ‖x‖E +

(∫ δ

0
(t−2α‖(C(t, A) − I)rx‖)q

dt

t

)1/q
.

If A ∈ C(M, 0), then we can set δ = ∞ in the previous theorem.
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Corollary 4.3.1 ([166]). Under the conditions of the previous theorem, we have
(i) C(t, A)(E,D(Ar))θ,q ⊆ (E,D(Ar))θ,q, t ∈ R+, 0 < α < r, 1 ≤ q < ∞ (or 0 ≤ α ≤ r, q = ∞);
(ii) S(t, A)(E,D(Ar))α

r
,q ⊆ (E,D(Ar))α+1/2

r
,q
, t ∈ R+, 0 < α < r − 1/2, 1 ≤ q < ∞ ( or 0 ≤ α ≤

r − 1/2, q = ∞).

Proposition 4.3.6 ([166]). Let A ∈ C(M, 0). Then
(i) (E,D(Ar))α

r
,1 ⊆ D((−A)α) ⊆ (E,D(Ar))α

r
,∞ if r ∈ N, 0 < α < r;

(ii) (E,D(Aβ))θ,q) ⊆ (E,D(Ar))α
r
,q if r ∈ N, 0 < α < β ≤ r, 1 ≤ q ≤ ∞, θ = α/r, since the Favard

class (E,D((−A)α))1,∞ consists of elements with the norm

‖x‖ + sup
ε>0

∥∥∥∥ 1

Cα,r

∫ ∞
ε

t−2α(C(t, A) − I)r
dt

t

∥∥∥∥
E

.

In particular, D((−A)β) is dense in (E,D(Ar))α
r
,q for 0 < α < β ≤ r, 1 ≤ q < ∞.

Let (E,D(Ar))oα
r
,q denote the closure of D(Ar) in (E,D(Ar))α

r
,q.

Corollary 4.3.2 ([166]). An element x ∈ (E,D(Ar))oα
r
,q, 0 ≤ α ≤ r, r ∈ N, iff lim

t→0+
‖(C(t, A) −

I)x‖(E,D(Ar))α
r ,q

= 0.

Proposition 4.3.7. Let A ∈ C(M, 0). Then
(i) if x ∈ (E,D(Ar))α

r
,q with 0 < α < r, 1 ≤ q < ∞ ( or 0 ≤ α ≤ r, q = ∞), r ∈ N, then

‖(C(t, A) − I)rx‖E = O(t2α), t → 0 + . (4.5)

Conversely, if (4.5) holds, then x ∈ (E,D(Ar))α
r
,∞;

(ii) for 0 < α < r, r ∈ N, an element x ∈ (E,D(Ar))oα
r
,∞ iff

‖(C(t, A) − I)rx‖E = o(t2α), t → 0 + . (4.6)

In [130], it was proved that for A ∈ C(M, 0), x ∈ D(A1/2) implies sin(
√
At)x ∈ D(Aγ), 0 < γ < 1/2,

and

‖Aγ sin(
√
At)x‖ ≤ ct1−2γ‖

√
Ax‖.

Proposition 4.3.8. Let A ∈ C(M, 0), and let E be reflexive. Then

S(t, A)(E,D(A))1/2,∞ ⊆ D(A), t ∈ R+.

As in the previous section, denote by E−α,β, E
+
α,β the subpaces related to C(·, A) as for C0-groups

early, i.e., the spaces of fractional derivatives.

Proposition 4.3.9 ([130]). Let α ≥ 0, α �= k + 1/2, k ∈ N0. Then

E−2α,β, E
+
2α,β ⊆ D((bI −A)α), β, b > ωc(A). (4.7)

In the case α = k + 1/2, k ∈ N0, inclusion (4.7) can violate.

Theorem 4.3.2 ([130]). Let E = Lp(X,Σ, µ) with 1 < p < ∞, A ∈ C(M,ω), and let u0 ∈ D((bI −A)α),
u1 ∈ D((bI −A)γ), γ = max{α− 1/2, 0}. Then for a solution of problem (3.1), we have

(i) if 0 ≤ α ≤ 1, then ‖u(t) − u(0)‖ = O(t2α), t → 0+;
(ii) if 1/2 ≤ α ≤ 1, then u(·) is continuously differentiable and ‖u′(t) − u′(0)‖ = O(t2α−1), t → 0+.

To obtain the assertion of the theorem in the general Banach space E, we need an additional smooth-
ness, i.e., u0 ∈ D((bI −A)α+δ), u1 ∈ D((bI −A)γ), γ = max{α + δ − 1/2, 0} for a certain δ > 0.
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Definition 4.3.1. For an operator A ∈ C(E), we set

D̃(A)
E

:= {x ∈ E : ∃ {xn} ⊆ D(A) such that ‖xn‖D(A) ≤ M and lim
n→∞

‖xn − x‖E = 0}.

In the operator semigroup theory, D̃(A)
E

is the Favard class (saturation class).

Proposition 4.3.10. Let A ∈ C(E). Then for t → 0+,

K(t, x;E,D(A)) =

{
O(t) for x ∈ D̃(A)

E
,

o(t) for x ∈ N (A).

Moreover, if E is reflexive, then D(A) = D̃(A)
E
.

We set Cβ
t [C(·, A)] =

β

tβ

t∫
0

(t− s)β−1C(s,A) ds.

Proposition 4.3.11. Let A ∈ C(M,ω). Then the following conditions are equivalent for 0 < α ≤ 2:

(i) ‖Cα
t [C(·, A)]x− x‖E = O(tα), t → 0;

(ii) K(tα, x,E;D(A)) = O(tα), t → 0.

Moreover, the condition x ∈ N (A) is equivalent to ‖Cα
t [C(·, A)]x − x‖E = o(t2), t → 0.

With the notation u′′ = (A− c2I)u(t) = B2u(t), u(0) = x, u′(0) = y for c = 0, we have the following
assertion.

Theorem 4.3.3 ([121]). Let x ∈ E be such that ‖C(t, A)x − x‖ = o(t2) as t → 0. Then x ∈ D(B2) and

B2x = 0. The saturation ‖C(t, A)x − x‖ = O(t2), t → 0+, holds iff x ∈ D̃(B2)
E

. If E is reflexive, then

D̃(B2)
E

= D(B2).

Denote

V (t)x =
1

t

∫ t

0
C(s,A)xds.

Theorem 4.3.4 ([121]). Let x ∈ E be such that ‖V (t)x − x‖ = o(t2), t → 0+. Then x ∈ D(B2) and

B2x = 0. The saturation ‖V (t)x− x‖ = O(t2), t → 0+, holds iff x ∈ D̃(B2)
E

.

If c �= 0, then we have the operator B2 + c2I in the saturation theorem. For example, the following
theorem holds.

Theorem 4.3.5 ([121]). Let x and y be such that ‖t−1(u(t) − x) − y‖ = o(t2), t → 0. Then x ∈ D(B2),
y ∈ D(B2), (B2+c2I)x = (B2+c2I)y = 0 and u(t) = x+ty. Moreover, ‖t−1(u(t)−x)−y‖ = O(t2), t → 0

iff x ∈ D(B2), (B2 + c2I)x = 0, and y ∈ D̃(B2)
E

.

Proposition 4.3.12 ([252]). For A ∈ C(M, 0), we have the Landau inequalities

‖A2x‖4 ≤
1024

315
‖x‖3‖A4x‖, ‖A2x‖4 ≤

400

49
‖x‖2‖A4x‖2, ‖A3x‖4 ≤

2880

343
‖x‖‖A4x‖3.

Chapter 5

SPECTRAL PROPERTIES OF C0-COSINE OPERATOR FUNCTIONS

In the same way as for a C0-semigroup, necessary and sufficient conditions for A to generate a
C0-cosine operator function are formulated in terms of conditions on the location of the spectrum and
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estimates for the resolvent; see [17]. For a narrow class of C0-cosine operator functions on a Hilbert space,
these conditions are essentially based on the location of the spectrum; see [210].

5.1. Location of the Spectrum

Proposition 5.1.1 ([221]). Let a C0-cosine operator function C(·, A) be given. Then

(i) cosh(t
√
σ(A)) ⊆ σ(C(t, A)), t ∈ R;

(ii) cosh(t
√
Pσ(A)) = Pσ(C(t, A)), t ∈ R;

(iii) cosh(t
√
Rσ(A)) ⊆ Rσ(C(t, A)), t ∈ R.

Proposition 5.1.2 ([5, 222]). If µ ∈ Rσ(C(t, A)) and {λn}n∈N is the set of roots of the equation µ =
cosh(λnt), then λ2n0 ∈ Rσ(A) for a certain n0 ∈ N, and λ2n �∈ Pσ(A) does not hold for any n ∈ N
µ ∈ Pσ(C(t, A)∗).

Proposition 5.1.3 ([5, 221]). If µ ∈ Cσ(C(t, A)) and λn are from Proposition 5.1.2, then λ2n ∈ Cσ(A) ∪
ρ(A). The case where λ2n ∈ ρ(A) for all n ∈ N is possible.

Proposition 5.1.4 ([138,181]). If E = H is Hilbert and A ∈ C(M, 0) or C(·, A) is a family of normal
operators, then

σ(C(t, A)) = cosh(t
√
σ(A)), t ∈ R.

Proposition 5.1.5 ([104]). Let a C0-cosine operator function C(·, A) satisfy Condition (F), and let E =
H be Hilbert. Then µ ∈ ρ(C(t, A)) iff {z2 : cosh(zt) = µ} ⊆ ρ(A) and sup{‖zR(z2;A)‖ : cosh(zt) = µ} <
∞.

Proposition 5.1.6 ([206]). Let A ∈ C(M, 0). Then
(i) σ(A) ⊂ R−;
(ii) if E �= {0}, then σ(A) �= ∅;
(iii) the spectrum σ(A) is bounded iff A ∈ B(E).

A Banach space E is said to be hereditarily indecomposable (in brief, an H.I. space) if whenever X1 and
X2 are closed infinite-dimensional subspaces of E and δ > 0, then there exist unit vectors x1 ∈ X1, x2 ∈ X2
such that ‖x1 − x2‖ < δ. In other words, this property can be reformulated as follows [146]: for any two
infinite-dimensional subspaces X1,X2 ⊂ E such that X1 ∩X2 = {0}, the subspace X1 +X2 is not closed.

Proposition 5.1.7 ([248]). Let E be an H.I. space, and let A ∈ C(M,ω). Then σ(A) is either a finite
set (possibly empty) in C or consists of a sequence {µn}∞n=1 that either converges to a certain point of C
or satisfies lim

n→∞
Reµn = −∞.

Proposition 5.1.8 ([248]). Let E be an H.I. space, and let C(·, A) be a non-quasi-analytic C0-cosine
operator family. Then σ(A) ∩ C �= ∅.

Proposition 5.1.9. Let A ∈ GR(M,ω). Then
(i) the spectrum of A lies in the strip −ω < Re z < ω (see Fig. 2);
(ii) the operator A2 generates a C0-cosine operator function by the formula

C(t, A2) =
1

2

(
exp(tA) + exp(−tA)

)
, t ∈ R.

Proposition 5.1.10 ([15]). For A ∈ C(M,ω) and the corresponding matrix differential operator A =(
0 I
A 0

)
arising in reducing the Cauchy problem (3.1) to system (3.5), the following relation holds:

{λ2 : λ ∈ σ(A)} = σ(A).
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Fig. 2

Proposition 5.1.11 ([221]). Let A ∈ C(M,ω). Then the spectrum σ(A) lies on a certain parabola whose
branches are directed to the left; see Fig. 3.

Fig. 3

Proposition 5.1.12 ([5]). There exist a C0-cosine operator function C(·, A) and a Banach space E such
that the sets r1 := {t : 0 ∈ ρ(C(t, A))}, r2 := {t : 0 ∈ Pσ(C(t, A))}, and r3 := {t : 0 ∈ Cσ(C(t, A))}, are
dense in R, and, moreover, R = r1 ∪ r2 ∪ r3.

Proposition 5.1.13 ([85]). For the C0-cosine operator function C(t, A) =
∞∑
k=0

t2k

(2k)!
Ak, A ∈ B, given on

a Banach algebra B with unity, we have
(i) 0 ≤ ωc(A) < ∞;
(ii)

λR(λ2, A) =

∫ ∞
0

e−λtC(t, A) dt for Reλ > ωc(A);

(iii)

R(λ2, A) =

∫ ∞
0

e−λtS(t, A) dt for Reλ > ωc(A);

(iv)

C(t, A) =
1

2πi

∫
γ

eλtλ(λ2I −A)−1 dλ, t ∈ R;
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(v)

S(t, A) =
1

2πi

∫
γ

eλt(λ2I −A)−1 dλ, t ∈ R,

where γ is a certain contour enclosing the spectrum of the operator A ∈ B.

Proposition 5.1.14 ([85]). Under the conditions of Proposition 5.1.13, we have

ωc(A)2 = sup
λ∈σ(A)

(|λ| + Reλ)/2.

Theorem 5.1.1 ([105]). Let A ∈ C(M,ω). The following conditions are equivalent:
(i) 1 ∈ ρ(C(2π,A));
(ii) −N20 ⊆ ρ(A) and the sequences

RN =
1

N

N−1∑
n=0

n∑
k=−n

(−k2I −A)−1

and

SN =
1

N

N−1∑
n=0

n∑
k=−n

A(−k2I −A)−1

are bounded in B(E);
(iii) −N20 ⊆ ρ(A) and there exist the limits

Rx := s- lim
N→∞

RNx and Sx := s- lim
N→∞

SNx (5.1)

for all x ∈ E.

Theorem 5.1.2 ([105]). Let A ∈ C(M,ω). In a Hilbert space E = H, the following condition are equiv-
alent:

(i) 1 ∈ ρ(C(2π;A));
(ii) −N20 ⊆ ρ(A) and supk∈Z ‖k(−k2I −A)−1‖ < ∞.

Chapter 6

UNIFORMLY BOUNDED C0-COSINE OPERATOR FUNCTIONS

In this chapter, we collect assertions that, in one way or another, are related to the boundedness of
cosine operator functions, although we consider C0-cosine operator functions of polynomial and sometimes
exponential growth. The matter is that the asymptotic behavior of resolving families for second order

equations differs from that of operator semigroups, and the representation C(t, A) =
1

2
(exp(t

√
A) +

exp(−t
√
A)) does not always hold.

6.1. Behavior of C0-Cosine Operator Functions at Infinity

As was already noted, the boundedness of a C0-cosine operator function is a property that is not
obtained by a shift of the generator Ab = A + bI.

Proposition 6.1.1 ([143]). There exist operators A ∈ C(M,ω), such that for any number b ∈ R, the
operator A + bI does not generate a bounded C0-cosine operator function.

With the cosine equation (i) (see p. 18) one associates the hyperbolic cosine cosh(t) of exponential
growth, as well as the bounded ordinary function cos(t). In the general case, for a C0-cosine operator
function, a polynomial growth in t is also possible. So, for example, we have the following.
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Example 6.1.1 ([207]). Let E = R2. Then C(t) =

(
1 0
t2

2 1

)
, t ∈ R, is a C0-cosine operator function

on E (i.e., (i) on p. 18 holds). If the Euclidean norm is given on E, then

‖C(t)‖ =

√
1 +

t2

2
+

t4

4
, t ∈ R.

Under the conditions of the previous example, for any ω > 0, there exists Mω ≥ 1 such that
‖C(t)‖ ≤ Mω cosh(ωt), t ∈ R, but C(·) is not bounded on R.

Note by the way that Example 6.1.1 describes exactly the case where there arises the problem on
the representation of C(·) as the half-sum of two exponential functions [108].

Example 6.1.2 ([118]). Let A be the operator on the space C1([a, b]) defined by the formula

(Af)(s) := sf(s), s ∈ [a, b].

Then A is a generator of a C0-family of a cosine operator function (C(t, A)f)(s) = h(s, t)f(s), s ∈ [a, b],
t ∈ R, where h(s, t) = cos(t

√
−s), s ∈ [a, b], t ∈ R. The norm of this C0-cosine operator function is equal

to

‖C(t, A)‖ = max
{

sup
s∈[a,b]

|h(s, t)|, sup
s∈[a,b]

∣∣∣∣ ddsh(s, t)

∣∣∣∣ }
and admits the estimate

‖C(tn, A)‖ ≥ c(1 + |tn|)

with certain {tn}, limn→∞ tn = ∞, and a constant c > 0.
Therefore, the spectrum of the operator A coincides with the closed interval [a, b], and for any a, b < 0,

the norm ‖C(t, A)‖ is not bounded on R.

Example 6.1.3 ([118]). Let A be the operator on the space L1(R) defined by the formula

(Af)(s) :=

(
d

ds

)2
f(s), s ∈ R.

Then A is a generating operator of the C0-cosine operator function (C(t, A)f)(s) =
1

2

(
f(t + s) + f(t −

s)
)
, s, t ∈ R. Moreover, the C0-semigroup generated by A admits the estimate

‖ exp(zA)‖ ≤

(
|z|

Re(z)

) 1
2

for any z with Re z ≥ 0.

Example 6.1.4 ([118]). Let A be the operator on the space Lp(Rd) defined by the formula

(Af)(s) := ∆f(s), s ∈ Rd, d ∈ N.

Then A is a generator of a C0-cosine operator function C(·, A) only in the case p = 2 in general. Moreover,
the C0-semigroup generated by the operator A admits the estimate

‖ exp(zA)‖ ≤

(
|z|

Re(z)

)d| 1
p
− 1
2
|

for any z with Re z ≥ 0.

Theorem 6.1.1 ([118]). The following implication of conditions holds: (i) =⇒ (ii) =⇒ (iii).
(i) A function C(·, A)x is of exponential type less than or equal to ω for all x ∈ E;
(ii) {z2 : Re z > ω} ⊆ ρ(A), and for any γ > ω, there exists a constant M = M(γ) such that

‖z(z2I −A)−1‖ ≤ M whenever Re z > γ;

(iii) the function C(·, A)x is of exponential type not exceeding ω for all x ∈ D(A).
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Theorem 6.1.2 ([118]). The following implication of conditions holds: (i) =⇒ (ii) =⇒ (iii).
(i) a C0-cosine operator function C(·, A) is bounded;
(ii) there exists a constant M1 such that

‖ exp(zA)‖ ≤ M1

(
|z|

Re(z)

) 1
2

, for any z with Re z ≥ 0;

(iii) there exists a constant M2 such that

‖C(t, A)x‖ ≤ M2(‖x‖ + t2‖Ax‖), t ∈ R, x ∈ D(A).

An attempt to give necessary and sufficient conditions for the uniform boundedness of C0-cosine
operator functions was undertaken in [107], but, as K. Bojadzhiev showed, the proof contains inaccuracies.

6.2. Uniformly Bounded C0-Cosine Operator Functions

For all x ∈ E and a ∈ R+, let us define the operator

Fax :=
2

π

∞∫
0

(
sin(at)

t

)2
C(2t, A)xdt,

which, obviously, is bounded for A ∈ C(M, 0).

Proposition 6.2.1 ([245]). Let 0 ≤ a ≤ b. Then

FaFbx = FbFax = 2

a∫
0

Fuxdu + (b− a)Fax, x ∈ E.

Proposition 6.2.2 ([245]). For a certain 0 ≤ a ≤ b, let the following relation hold:

2

b∫
a

Ftxdt = (b− a)(Fax + Fbx)

for any x ∈ E. Then the open interval (−b2,−a2) ⊆ ρ(A).

Proposition 6.2.3 ([245]). For the operator Fa, the following relations hold for a ∈ R+:

F k
a = (k − 1)k

a∫
0

(a− t)k−2Ftdt, k = 2, 3, ..., exp(itFa) = I + itFa − t2
a∫
0

eit(a−s)Fs ds.

Let a C0-cosine operator function C(·, A) be such that the operator

Eax := s- lim
α→0+

Ea,αx := s- lim
α→0+

α+ia∫
α+i0

(
λ(λ2I −A)−1 + λR(λ

2
I −A)−1

)
xdλ (6.1)

(where λ = α + iτ) is linear and continuous for all a ∈ R+.

Proposition 6.2.4 ([245]). There are examples of uniformly bounded C0-cosine operator functions for
which the family {Ea} from (6.1) is not defined.

Proposition 6.2.5 ([245]). For a C0-cosine operator function C(·, A), let family (6.1) be defined, and let
Ea = Eb for certain 0 < a < b. Then

(−b2,−a2) ∩
(
Rσ(A) ∪ Pσ(A)

)
= ∅.

45



Proposition 6.2.6 ([245]). Let the function Ea,αx be bounded for a ∈ [0, a] and α ∈ [0, α] with any
a, α ≥ 0, α �= 0. Then for all x ∈ E and a ∈ [0, a], there exists Eax, the operator Ea is bounded, and for
all 0 ≤ a ≤ b, the relation EaEb = EbEa = πiEa holds; moreover, for almost all a ∈ R+, we have the

relation Eax =
2

π

∞∫
0

sin(at)

t
C(t, A)xdt in the case where the integral converges.

Further, for 0 ≤ a ≤ b denote ∆ := (−b2,−a2) and E∆ := Eb −Ea .

Proposition 6.2.7 ([245]). Under conditions of Proposition 6.2.6, for any two intervals ∆1 and ∆2, we
have

E∆1E∆2 = E∆2E∆1 = E∆1∩∆2 .

Proposition 6.2.8 ([245]). Let ‖Eψ,ϕx‖ ≤ const for any ψ ∈ R+ and ϕ ∈ R+ , and. Moreover, let
Ea = Eb for certain 0 ≤ a ≤ b . Then (−b2,−a2) ⊆ ρ(A).

Proposition 6.2.9 ([245]). Under the conditions of Proposition 6.2.6, let the function Eax be continuous
at the point a0 ∈ R+ for any x ∈ E. Then −a20 /∈ Rσ(A) .

Proposition 6.2.10 ([245]). Let the space E be reflexive and strongly convex with the Gateaux-
differentiable norm, A ∈ C(M, 0), and let the operator C(t, A) have a real spectrum for any t ∈ R.
Then Rσ(A) = ∅.

Proposition 6.2.11 ([14]). Let A ∈ C(1, 0), and let A be the operator from Theorem 3.2.1. Then for
t ∈ [ln 2,∞),

‖C ′(t, A)‖B(E1 ,E) ≤ t · ln 2, ‖S(t, A)‖B(E,E1) ≤ t + 1,

and the resolvent (λI −A)−1 satisfies the estimate

‖R(λ,A)‖ ≤ (Reλ− ln 2)−1 for Reλ > ln 2.

Proposition 6.2.12 ([6, 7]). Let 0 �∈ σ(A), and let A ∈ C(M, 0). Then

sup
t∈R

‖S(t, A)‖ ≤
π

2
dist

(
0,
√
σ(A)

)
sup
t∈R

‖C(t, A)‖.

Proposition 6.2.13 ([6, 7]). For A ∈ C(M, 0), the set {x ∈ E : sup
t∈R+

‖S(t, A)x‖ < ∞} is dense in E iff

one of the following conditions holds:
(i) s- lim

n→∞
εnR(εn, A)x = 0 for any x ∈ E and a certain sequence εn ∈ R+ such that lim

n→∞
εn = 0;

(ii) the set R(A) is dense in E;
(iii) N (A∗) = {0}.

Proposition 6.2.14 ([107]). An operator A ∈ C(M, 0) satisfies Condition (F) iff the following condition
holds for each closed interval [a, b] :

sup
{
‖ exp(tG|D(G,µ))‖ : µ ∈ N, t ∈ [a, b]

}
< ∞.

Proposition 6.2.15 ([177]). Let A ∈ C(M, 0). Then the operator iA generates an α times integrated

group for α >
1

2
.

Proposition 6.2.16 ([138]). Let A ∈ C(M, 0), and let E = H. Then there exist a self-adjoint operator
Q and a constant M > 0 such that (

√
3(2M + 1))−1I ≤ Q ≤ MI and the operator QC(t, A)Q−1 is

self-adjoint for each t ∈ R. Moreover, C(t, A) = Q−1 cos(tL)Q and L∗ = L ≤ 0, where L := QAQ−1.
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Proposition 6.2.17 ([145]). For A ∈ C(M, 0), x ∈ D(A), the following inequality holds:

sup
t∈R+

‖S(t, A)Ax‖2 ≤ 4 sup
t∈R+

‖C(t, A)Ax‖ · sup
t∈R+

‖C(t, A)x‖.

Proposition 6.2.18 ([206]). Let A ∈ C(1, 0), and let

Cm(t) :=
m∑
j=0

C
2j
2m

(
t

2m

)2j
Aj

(
2m

t

)4m((
2m

t

)2
I −A

)−2m
,

where C
2j
2m are binomial coefficients. Then lim

m→∞
Cm(t)x = C(t, A)x for all x ∈ E and ‖

(
Cm(t) −

C(t, A)
)
x‖ ≤ t2‖Ax‖/

√
m for all x ∈ D(A), m ≥ 2.

Proposition 6.2.19 ([221]). The functions C(·, A)x and S(·, A)x are uniformly bounded for any x ∈ E
iff there exists a constant M ≥ 1 such that for Re z ≥ ω,∥∥∥∥ dk

dzk
(z2I −A)−1

∥∥∥∥ , ∥∥∥∥z dk

dzk
R(z2I −A)−1 + k

dk−1

dzk−1
(z2I −A)−1

∥∥∥∥ ≤
Mk!

|z|k+1
, k ∈ N.

Proposition 6.2.20 ([177]). Let an operator A generate a C0-cosine operator function such that for the
corresponding C0-sine operator function S(·, A) the estimate ‖S(t, A)‖ ≤ Mt, t ∈ R+ holds. Then the

operator iA generates an α times integrated semigroup for α >
3

2
.

6.3. Asymptotics of the Functions F (·) and G(·)

In this section, we study the asymptotic behavior of the C0-families F (t) and G(t) as t → ∞. Let
us consider the case under the assumption that there exist a real λ0 and a nonzero bounded operator
P ∈ B(E) such that

lim
t→∞

2e−λ0t C(t, A)x = Px for all x ∈ E. (6.2)

Clearly, in this case, there exists a constant M1 ≥ 1 such that

‖C(t, A)‖ ≤ M1e
λ0t for t ∈ R+. (6.3)

By the identity

2e−λ02t(C(2t, A) + I) = 2e−λ0tC(t, A)2e−λ0tC(t, A), (6.4)

in case (6.2), the number λ0 cannot be negative, since then e−λ02t → ∞ as t → ∞, and there is no
convergence.

In the case λ0 = 0, we have from (6.4) that P + 2I = P 2. On the other hand, setting t → ∞ and
s → ∞ in the cosine equation (see (i) in p. 18), we have 2P = P 2. Therefore, C(t, A) → P/2 = I as
t → ∞. Setting t → ∞ in relation (i) in p. 18, we obtain C(s,A) = I for all s ∈ R.

In connection with these simple arguments, we note that in [81], the assumption on the convergence
of C(t, A) to P as t → ∞, which has no meaning, was made.

We note by the way that in the case C(t, A) → P as t → ∞, it follows from (iv) of Proposition 2.4.1

that F (t)x = 2−1t2λ3F̂ (λ)x (for any λ > ω), which never converges as t → ∞ if x �∈ N (F̂ (λ)). The same
situation is true for G(·).

Therefore, the case λ0 = 0 is not interesting, and in what follows, we will assume that λ0 > 0. It is
clear from (6.4) that the operator P is a projection.

It is known that a generator of a C0-cosine operator function C(·, A) also generates a C0-semigroup
exp(·A) defined by formula (2.12).

As will be shown in the following theorem, the convergence of 2e−λ0t C(t, A) to P as t → ∞ implies

the convergence of e−λ
2
0t exp(tA) to P in the same topology.
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Theorem 6.3.1. Let condition (6.2) hold with λ0 ∈ R+. Then P is a projection with the range R(P ) =

N (λ20I −A) and the kernel N (P ) = R(λ20I −A). If, moreover, P is of finite rank and ‖2e−λ0tC(t, A) −
P‖ → 0 as t → ∞, then λ20 > Eω(A), Bσ(A) = {λ20 } and λ20 is a simple pole of the resolvent (λI−A)−1.

Proof. We prove that the C0-semigroup e−λ
2
0t exp(tA) strongly converges to P as t → ∞. Then it

follows from the ergodic theorem (see [76]) that P is a projection with R(P ) = N (λ20I −A) and N (P ) =

R(λ20I −A).
We have

e−λ
2
0t exp(tA)x =

e−λ
2
0t

2
√
πt

∫ ∞
0

e−
s2

4t eλ0s

(
2e−λ0sC(s,A) − P

)
xds +

e−λ
2
0t

2
√
πt

∫ ∞
0

e−
s2

4t eλ0s dsPx.

The first term Q1(t) in the right-hand side converges to zero, and the second term Q2(t) converges to Px
as t → ∞. Indeed,

e−λ
2
0t

2
√
πt

∫ ∞
0

e−
s2

4t eλ0sds =
1

2
√
πt

∫ ∞
0

e−
(s−2λ0t)

2

4t ds =
1
√
π

∫ ∞
−λ0
√
t

e−u
2
du

converges to
1
√
π

∫∞
−∞ e−u

2
du = 1 as t → ∞. Therefore, Q2(t) converges to Px as t → ∞.

Let ε > 0 be sufficiently small, and let τ ∈ R+ be so large that ‖2e−λ0sC(s,A)x − Px‖ ≤ ε for all
s ≥ τ. Then the quantity

‖Q1(t)‖ ≤
e−λ

2
0t

2
√
πt

∫ τ

0
e−

s2

4t eλ0s‖(2e−λ0sC(s,A) − P )x‖ds + ε
e−λ

2
0t

2
√
πt

∫ ∞
0

e−
s2

4t eλ0sds‖x‖,

and hence is bounded by the constant 2ε as t → ∞. That is, Q1(t) → 0 as t → ∞.

If ‖2e−λ0tC(t, A)−P‖ → 0 as t → ∞, then in a similar way, we prove that ‖e−λ
2
0t exp(tA)−P‖ → 0

as t → ∞. When P is of finite rank, the semigroup exp(·A) attains the limit with the growth exponent
λ20. It follows from the theorem in [291] that λ20 > Eω(A), Bσ(A) = {λ20}, and λ20 is a simple pole of the
resolvent (λI −A)−1.

We need the following assertion.

Lemma 6.3.1 (see [17], Lemma 7.3.1). If a strongly continuous function f(·) : R+ → E is such that
limt→∞ f(t) = ϕ, ϕ ∈ E, then for any λ with Reλ > 0, we have

e−λt
∫ t

0
eλsf(s) ds → ϕ/λ for t → ∞. (6.5)

Proposition 6.3.1. Let a C0-cosine operator function C(·, A) satisfy (6.2) with λ0 > 0. Then

2e−λ0tS(t, A) → P/λ0 and 2e−λ0t
∫ t
0 S(s,A)ds → P/λ20 strongly as t → ∞.

Proof. We have the following relations:

2e−λ0tS(t, A) = e−λ0t
∫ t

0
eλ0s2e−λ0sC(s,A) ds

and

2e−λ0t
∫ t

0
S(s,A)ds = e−λ0t

∫ t

0
eλ0se−λ0s

∫ s

0
eλ0η2e−λ0ηC(η,A) dη ds.

Now the assertion follows from Lemma 6.3.1.

Theorem 6.3.2 ([239]). Let a C0-cosine operator function C(·, A) satisfy condition (6.2) with λ0 ∈ R+.
Then for each λ > λ0 and each x ∈ E, we have

s- lim
t→∞

2e−λ0tF (t)x = λ(λ2/λ20 − 1)PF̂ (λ)x,
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which is equal to
1

λ20
(As − A)x if x ∈ D(A) and F̂ (λ)x ∈ N (λ20I − A)−1, simultaneously, and is equal to

zero if F̂ (λ)x ∈ R(λ20I −A)−1.

Proof.For λ0 ∈ R+, let us write the relation

2e−λ0tF (t)x = 2e−λ0t
∫ t

0
S(s,A)λ3F̂ (λ)xds− 2e−λ0t(C(t, A) − I)λF̂ (λ)x.

Using Propositions 6.3.1 and 2.4.1 (iv) and setting t → ∞, we obtain the required result.
Analogously, using Propositions 6.3.1 and 2.4.1 (v), we obtain the following assertion.

Theorem 6.3.3 ([239]). Let a C0-cosine operator function C(·, A) satisfy condition (6.2) with λ0 ∈ R+.
Then for each λ > λ0 and each x ∈ E, we have

lim
t→∞

2e−λ0tG(t)x = Ĝ(λ)λ(λ2/λ20 − 1)Px,

which is equal to 1
λ20

(Ac −A)x if x ∈ N (λ20I −A)−1 and is equal to zero if x ∈ R(λ20I −A)−1.

As was mentioned above, if C(t, A) strongly converges as t → ∞, then C(·, A) ≡ I, and F (·) and
G(·) grow. In what follows, we will consider the behavior of F (·) and G(·) under the assumption that

sup
t>0

‖t−2
∫ t

0

∫ s

0
C(u,A) du ds‖ < ∞ and t−2 C(t, A) → 0 (6.6)

strongly as t → ∞. We need the following assertion.

Proposition 6.3.2 ([258]). Under assumption (6.6), we have

(i) the mapping P : x → lim
t→∞

2t−2
∫ t
0

∫ s
0 C(u,A)xdu ds is a projection with R(P ) = N (A), N (P ) =

R(A) and D(P ) = N (A) ⊕R(A);

(ii) there exists x := − lim
t→∞

2t−2
t∫
0

s∫
0

u∫
0

v∫
0

C(τ,A)y dτ dv du ds iff y ∈ A(D(A) ∩ R(A)) (= R(A) in

the case where C(·, A) is (C, 2)-ergodic, i.e., D(P ) = E). Moreover, this element x is a unique solution

of the equation Ax = y in R(A), i.e., x = Ã−1y, where Ã = A|R(A).

Using Proposition 2.4.1 (iv) and the proposition mentioned above, we obtain the following theorem.

Theorem 6.3.4 ([239]). Under assumption (6.6), the following assertions hold:

(i) there exists the limit y = lim
t→∞

2t−2F (t)x iff F̂ (λ)x ∈ N (A) ⊕R(A) for a certain (and all) λ > ω.

When the limit exists, y = λ3PF̂ (λ)x and is independent of λ;

(ii) for F̂ (λ)x ∈ N (A)⊕R(A), z = lim
t→∞

2t−2
∫ t
0

∫ s
0 F (τ)x dτds does exist iff F̂ (λ)x ∈ A(D(A)∩R(A))

for a certain (and all) λ > ω. In this case, z = −λ(λ2I −A)Ã−1F̂ (λ)x, which is independent of λ.

Proof. We have from (iv) of Proposition 2.4.1 that

2

t2
F (t)x =

2

t2
(I − C(t, A))λF̂ (λ)x +

2

t2

∫ t

0

∫ s

0
C(τ,A)λ3F̂ (λ)xdτds, (6.7)

and

2

t2

∫ t

0

∫ s

0
F (τ)xdτds =

2

t2

∫ t

0

∫ s

0

∫ u

0

∫ v

0
C(τ,A)λ3F̂ (λ)xdτdvduds

−
2

t2

∫ t

0

∫ s

0
C(τ,A)λF̂ (λ)xdτds + λF̂ (λ)x. (6.8)
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Then assertions (i) and (ii) follow from (6.7) and (6.8), respectively, as a consequence of Proposi-
tion 6.3.2.

By Propositions 2.4.1 (v), 6.3.2, and 2.4.2 (ii), we have the following theorem.

Theorem 6.3.5. Under assumption (6.6), we have the following assertions:

(i) if x ∈ N (A) ⊕R(A), then s- lim
t→∞

2t−2G(t)x = AcPx;

(ii) if x ∈ A(D(A) ∩ R(A)), then s- lim
t→∞

2t−2
∫ t
0

∫ s
0 G(τ)x dτds = −(Ac − A)Ã−1x = x − AcÃ

−1x,

where Ã = A|R(A).

Chapter 7

ERGODIC PROPERTIES

Ergodic properties of operator C0-semigroups were considered, e.g., in [17], [20], [66], [76].

7.1. Standard Limits

Proposition 7.1.1 ([145]). Let A ∈ C(M, 0). For any x = y+̇z ∈ R(A) ⊕N (A),∥∥∥∥∥∥ 1

T

T∫
0

C(t, A)xdt− z

∥∥∥∥∥∥ = O

(
|T |−1

)
,

∥∥∥∥∥∥ 1

T

T∫
0

S(t, A)xdt −
T

2
z

∥∥∥∥∥∥ = O
(
|T |−1

)
as T → ∞.

Proposition 7.1.2 ([145]). In the case where A ∈ C(M, 0) and E is reflexive, we have E = R(A)⊕N (A),

and, moreover, for each x ∈ E, we have the strong convergence of
1

T

T∫
0

C(t, A)xdt to x as T → ∞.

The following definition for C0-cosine operator functions is analogous to Definition 7.1.8 in [17, p. 69]
for C0-semigroups.

Definition 7.1.1. A C0-semigroup exp(·A) is said to be weakly (strongly, uniformly) (C,α) ergodic

at infinity if the operator Cα
t [C(·, A)]x := αt−α

∫ t
0 (t − s)α−1C(s,A)xds does exist for all t > 0;∫∞

0 e−λt‖Cα
t [C(·, A)]x‖dt < ∞ for all x ∈ E and λ > max(0, ω(A)), and if the limit (C,α)-

limC(·, A) := lim
t→∞

Cα
t [C(·, A)] exists in the weak (strong, uniform) operator topology. This is the so-called

Cesaro limit.

Definition 7.1.2. A C0-cosine operator function C(·, A) is said to be weakly (strongly, uniformly) ergodic
in the Abel sense if the limit

(A)- lim
t→∞

C(t, A) := lim
λ→0+

λ

∫ ∞
0

e−λtC(t, A)dt ≡ lim
λ→0+

λ2R(λ2, A) (7.1)

exists in the corresponding operator topology.

Setting t → 0+ instead of t → ∞ or λ → ∞ instead of λ → 0+, we obtain the definition of ergodicity
at zero.

Theorem 7.1.1 ([76]). If for a fixed α ≥ 0, there exists the limit (C,α)- lim
ξ→∞

x(ξ) = y ∈ E, then for

β ≥ α, there exist the limits (C, β)- lim
ξ→∞

x(ξ) = A- lim
ξ→∞

x(ξ) = y.
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Proposition 7.1.3 ([259]). A C0-cosine operator function C(·, A) given on the Grothendieck space E is
strongly (C, 1)-ergodic iff the following conditions hold:

(i) ‖S(t, A)‖ = O(t) as t → ∞;
(ii) s- lim

t→∞
t−1C(t, A)S(s,A) = 0 for all s ∈ R+;

(iii) w∗- cl(R(A∗)) = R(A∗).

Proposition 7.1.4 ([259]). Under the conditions of Proposition 7.1.3 with the space E having the
Danford–Pettis property, a C0-cosine operator-valued C(·, A) is uniformly (C, 1)-ergodic iff condition
(i) of Proposition 7.1.3 holds, ‖C(t, A)S(s,A)‖ = O(t) as t → ∞ for each s ∈ R+, and, finally,

w∗- cl(R(A∗)) = R(A∗).

We set T (t, A) :=
∫ t
0 (t− s)C(s,A)ds and define Q2w∗ as in the page 68.

Proposition 7.1.5 ([259]). Let E be a Grothendieck space, and let K(t,Q) be a w∗-continuous C0-cosine
operator function. If ‖T (t, A)‖ = O(t2) as t → ∞ and w∗- lim

t→∞
t−2K(t,Q)T (s)∗x∗ = 0 for all s ∈ R+,

then R(Q2w∗) = N (Q), N (Q2w∗) = R(Q), D(Q2w∗) = E∗.
Moreover, if s- lim

t→∞
t−2K(t,Q)T (s)∗ = 0 for all s ∈ R+ then the C0-cosine operator function K(·, Q)

is strongly (C, 2)-ergodic.

Proposition 7.1.6 ([259]). A C0-cosine operator function C(·, A) on the Grothendieck space E is strongly
(C, 2)-ergodic iff

(i) ‖T (t, A)‖ = O(t2) as t → ∞;
(ii) s- lim

t→∞
t−2C(t, A)T (s,A) = 0 for all s ∈ R+;

(iii) w∗- cl(R(A∗)) = R(A∗).

Proposition 7.1.7 ([259]). Under the conditions of Proposition 7.1.6, let the space E have the Danford–
Pettis property. In this case, a C0-cosine operator function C(·, A) is uniformly (C, 2)-ergodic iff ‖T (t)‖ =
O(t2), ‖C(t, A)T (s,A)‖ = O(t2) as t → ∞ and s ∈ R+, and also w∗-cl(R(A∗)) = R(A∗).

For any x ∈ E, we set Pcx := s- lim
t→∞

1

t
S(t, A)x,

Pax := s- lim
λ→0+

λ

∞∫
0

e−λtC(t, A)xdt and Ptx := s- lim
n→∞

(
1

n

n−1∑
k=0

C(kt,A)x

)
.

Proposition 7.1.8 ([257]). For A ∈ C(M, 0), the operators Pc and Pa coincide and are projections. We
have the relations

R(Pc) = N (A) =
⋂
s>0

N (C(s,A) − I), N (Pc) = R(A) =
⋃
s>0

R(C(s,A) − I),

D(Pc) =
⋂
s>0

N
(
C(s,A) − I

)
⊕

⋃
s>0

R
(
C(s,A) − I

)
= {x ∈ E : ∃ {tn}, tn → ∞, w- lim

n→∞
(S(tn, A)x)/tn does exist}.

Proposition 7.1.9 ([257]). Let A ∈ C(M, 0). For each t ∈ R+, the operator Pt is a projection, and

R(Pt) = N (C(t, A) − I), N (Pt) = R(C(t, A) − I),

D(Pt) = N (C(t, A) − I) ⊕R(C(t, A) − I)

=
{
x ∈ E : ∃ {nk}, nk → ∞, w- lim

k→∞

(
1

nk

nk−1∑
l=0

C(lt, A)x

)
does exist

}
.
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Proposition 7.1.10 ([257]). Let A ∈ C(M, 0). Let there exist δ > 0 such that the operator C(t, A) + I is
invertible for t ∈ (0, δ) (in particular, this holds if ‖C(t, A) − I‖ < 2 for t ∈ (0, δ)). Then Pt = Pc for all
t ∈ (0, 2δ).

Consider the operator

H
β
t [C(·, A)]x =

β

tβ

∫ t

0
sβ−1C(s,A)xds t > 0, x ∈ X. (7.2)

Theorem 7.1.2 ([176]). Let C(·, A) be a bounded C0-cosine operator function on a Banach space E. The
following assertions are equivalent:

(i) 0 ∈ Cσ(A) ∪ ρ(A);

(ii) the function C(·, A) is Hβ
t -stable for all β > 0;

(iii) lim
n→∞

Hβ0
tn [C(·, A)] = 0 in the weak operator topology for a certain β0 > 0 and a certain positive

sequence {tn} converging to ∞.

It is clear from the proof of this theorem that the boundedness of C(·, A) is not necessary for the
implication (iii) =⇒ (i).

It is well known that a generalized solution of the abstract Cauchy problem

u′′(t) = Au(t), t ∈ (−∞,∞), u(0) = x, u′(0) = y,

is given by the formula u(t) = C(t, A)x + S(t, A)y.

Theorem 7.1.3 ([176]). Let C(·, A) be a bounded C0-cosine operator function on a Banach space E, and

assume that 0 ∈ Cσ(A)∪ ρ(A). Then a generalized solution u(t) is Hβ
t -stable for all β > 0, for all x ∈ E,

and for all y from a certain dense subset of E.

Theorem 7.1.4 ([257]). Let C(·, A) be a bounded cosine operator function on a Banach space E, and
assume that 0 ∈ ρ(A) ∪Cσ(A). Then the following conditions are equivalent:

(i) y ∈ A
(
D(A) ∩R(A)

)
;

(ii) x := − limt→∞ 2t−2
∫ t
0

∫ s
0

∫ u
0

∫ v
0 C(τ,A)y dτ dv du ds does exist;

(iii) for a certain sequence {tm}, the weak limit x := −w- lim
tm→∞

2t−2m
∫ tm
0

∫ s
0

∫ u
0

∫ v
0 C(τ,A)y dτ dv du ds

does exist.
Such an x is a unique solution of the equation Ax = y in R(A), i.e., x = (Ã)−1y,, where Ã = A|R(A).

Theorem 7.1.5 ([176]). Let C(·, A) be a bounded cosine operator function on a Banach space E. The
following conditions are equivalent:

(i) 0 ∈ ρ(A) ∪ Cσ(A);

(ii) for all β > 0, we have s- limt→∞Cβ
t [C(·, A)] = 0;

(iii) for a certain β0 > 0 and a certain positive sequence {tn} converging to ∞ as n → ∞, we have

w- limn→∞Cβ0
tn [C(·, A)] = 0.

The assertion that lim
t→∞

C
β
t [u(·)] = 0, which is similar to Theorem 7.1.3 (for a generalized solution

u(·) of a second-order equation) can be proved in the same way.

7.2. Tauberian Theorem

As was noted, for a C0-cosine operator function C(t, A), the notion of stability is vacuous because
the convergence C(t, A) → P ∈ B(E) as t → ∞ implies C(t, A) ≡ I. It is clear that integrated semi-
groups or cosine functions do not have asymptotic convergence properties because they naturally increase
polynomially [115].
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On the other hand, one can consider the Cesaro averaging of cosine operator functions. The necessary
and sufficient condition for a bounded C0-cosine operator function to be (C, β)-stable for any β > 0, i.e.,

1/tβ
∫ t
0 (t− s)β−1C(s,A)ds → 0 strongly as t → ∞, is that 0 ∈ ρ(A)∪Cσ(A), as was seen in the previous

section. Therefore, the behavior of (C, β)-averages is defined just by the point 0. It is known that for at
least polynomially bounded C0-semigroups, the behavior of some Cesaro type averages is determined by
the behavior of the resolvent in a neighborhood of zero [168]. We are going to show here that for C0-cosine
operator functions, the situation is very similar.

To see how the behavior of Cesaro type averages is closely related to the behavior of the resolvent
of a polynomially bounded cosine operator function, in a neighborhood of zero, we consider the basic
example of the n× n nilpotent matrix

Q =



0 0 0 . . . . . . 0
1 0 0 . . . . . . 0

0 1 0
. . .

. . . 0

0 0 1 0
. . . 0

...
...

. . .
. . .

. . . 0
0 0 0 0 1 0


.

Then Qn = 0 and cosh(t
√
Q) = I + Q

t2

2!
+ · · · + Qn−1 t2(n−1)

(2n− 2)!
; therefore, the C0-cosine operator

function cosh(t
√
Q), t ≥ 0, is certainly polynomially bounded. The resolvent of Q is given by

(λ2I −Q)−1 = λ−2
(
I −

Q

λ2

)−1
= λ−2

(
I +

Q

λ2
+

Q2

λ4
+ · · · +

Qn−1

λ2(n−1)

)
.

Hence, for α = 2n− 2, we have

lim
λ→0+

λ2+α(λ2I −Q)−1 = Qn−1

and ‖λ2+α(λ2I −Q)−1‖ ≤ n for all |λ| ≤ 1.
From the point of view of Cesaro convergence, we have

lim
t→∞

1

tα+1

∫ t

0
cosh(s

√
Q) ds =

Qn−1

(2n− 1)!
,

and, more generally,

lim
t→∞

1

tα+m

∫ t

0
(t− s)m−1 cosh(s

√
Q) ds =

Γ(m)

Γ(α + m + 1)
Qn−1 (7.3)

for all m = 1, 2, . . . .
Let A be the generator of a polynomially bounded cosine acting on a Banach space E, i.e., there

exist numbers M > 0 and β ≥ 0 such that

‖C(t, A)‖ ≤ M(1 + t)β for all t ≥ 0. (7.4)

Let P ∈ B(E) be a bounded linear operator.

Theorem 7.2.1 ([169]). Let α > 0, and let (7.4) hold. Then the conditions

(i) λα+2(λ2 −A)−1 → P in the strong operator topology as λ → 0+ in R;
(ii) there exist C > 0,N ≥ 0 and ρ0 > 0 such that

‖ρ2+α(ρ2ei2ϕ −A)−1‖ ≤
C

cosN (ϕ)
, 0 < ρ ≤ ρ0, ϕ ∈ (−π/2, π/2);
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are necessary and sufficient for the existence of a positive integer m such that

lim
t→∞

Γ(m + α + 1)

(Γ(m)tm+α

∫ t

0
(t− s)m−1C(s,A)xds = Px (7.5)

for each x ∈ E.

Remark 7.2.1. Since for an operator A that generates a polynomially bounded distribution cosine, we
can find the corresponding polynomially bounded and strongly continuous m-times integrated cosine
[80,214,215], the same theorem ought to be valid for the distribution case.

Remark 7.2.2. Assume that λ2(λ2I −A)−1 → P as λ → 0+, i.e., (i) holds with α = 0. Then we obtain
from the Hilbert identity that

λ2µ2(λ2I −A)−1(µ2I −A)−1 =
λ2µ2

λ2 − µ2
((µ2I −A)−1 − (λ2I −A)−1). (7.6)

Now setting λ =
√

2µ and then passing to the limit as µ → 0+, we obtain from (7.6) that P 2 = P, i.e.,
P is a projection. In the case where α > 0 in (i), the operator P is no longer a projection it follows from
(7.6) that P has the property P 2 = 0.

Chapter 8

UNIFORMLY BOUNDED C0-COSINE OPERATOR FUNCTIONS

As in the case of operator semigroups, the norm-continuity is a very restrictive requirement for cosine
operator functions, since it implies the boundedness of the generator. Conditions for generation of a C0-
cosine operator function for an infinitesimal operator A are more restrictive than those for generation of
operator semigroups.

8.1. Norm-Continuity

It is very natural that the boundedness of A in the case of a C0-cosine operator function follows
under more weaker additional assumptions than in the case of operator semigroups. So, for example, the
condition ‖tA exp(−tA)‖ ≤ C implies the boundedness of A for C = 1/e (see [17]), and in the case of
cosine operator functions, for boundedness of A, the boundedness ‖AS(t, A)‖ ≤ const with any constant
is sufficient.

Definition 8.1.1. A C0-cosine operator function C(·, A) is continuous in the uniform operator topology
(norm-continuous) if the function C(·, A) : R→ B(E) is continuous in the operator norm.

Proposition 8.1.1 ([273]). Let a C0-cosine operator function C(·, A) be continuous in the uniform op-
erator topology. Then A ∈ B(E) and

C(t, A) =
∞∑
k=0

t2kAk/(2k)!, t ∈ R, (8.1)

and, moreover, the series uniformly converges in t on each finite closed interval [0, T ].

Sometimes, in the literature, series (8.1) is written as cosh(t
√
A) analogously to the scalar case.

We note that a C0-sine operator function S(·, A), is always uniformly continuous in t ∈ R, as follows
from its definition.

Proposition 8.1.2 ([272]). Let A ∈ B(E). Then series (8.1) is a C0-cosine operator function whose
generator is A.
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Theorem 8.1.1 ([86]). Each of the following conditions is equivalent to the norm-continuity of C(·, A):
(i) lim

t→0
‖C(t, A) − I‖ = 0;

(ii) lim
t→0

‖t−1S(t, A) − I‖ = 0;

(iii) the generating operator A is bounded;
(iv) R(C(t, A)) ⊆ E1 for all t ∈ (α, β) with a certain α < β;
(v) the inclusion R(S(t, A)) ⊆ D(A) and the strong continuity of the function t → AS(t, A) hold for

all t ∈ (α, β) with a certain α < β.

Proposition 8.1.3 ([7]). The generator A of a C0-cosine operator function with a non-quasi-analytic
weight χ is bounded iff one of the following conditions hold:

(i) for a certain ε > 0, we have sup
0<t<ε

‖C(t, A) − I‖ < 1;

(ii) the C0-cosine operator function C(·, A) is the restriction to R of an entire operator function

C̃(·) : C→ B(E) of exponential type (equal to r(A)).

Proposition 8.1.4 ([273]). Let a C0-cosine operator function C(·, A) be twice strongly differentiable at
zero. Then A ∈ B(E).

Proposition 8.1.5 ([206]). Let A ∈ C(M, 0). Then A ∈ B(E) iff the spectrum σ(A) is bounded.

Proposition 8.1.6. Let a C0-cosine operator function C(·, A) be norm-continuous. Then

(i) lim
t→0

‖
2

t2

∫ t

0
S(s,A)ds− I‖ = 0;

(ii) for sufficiently small h, the operator
h∫
0

S(s,A)ds has a bounded inverse;

(iii) for sufficiently small h, we have the relation

A = (C(h,A) − I)

(∫ h

0
S(s,A)ds

)−1
.

Definition 8.1.2. A Grothendieck space is a Banach space in which every w∗-convergent sequence in E∗

is w-convergent.

Definition 8.1.3. We say that a Banach space E has the Dunford–Pettis property if 〈xn, x∗n〉 → 0 when-
ever xn weakly converges to zero in E and x∗n weakly converges to zero in E∗.

Proposition 8.1.7 ([259]). Any C0-cosine operator function C(·, A) given on a Grothendieck space with
the Dunford–Pettis property (for example, E = L∞ is such a space) is norm-continuous, i.e., A ∈ B(E).

Before formulating the next assertion, we recall [146] that if E is an H.I. space and B ∈ B(E), then
there exists a unique point λB ∈ σ(B) such that the operator B − λBI is strictly singular. Moreover,
B − λBI is a Riesz operator.

Proposition 8.1.8 ([248]). Let E be an H.I. Banach space, and let C(·, A) satisfy condition (7.4). Then
A ∈ B(E), and there is a positive integer m such that (A− λAI)m is a compact operator.

Proposition 8.1.9 ([7]). If B ∈ B(E) and a C0-cosine operator function C(·, B) is uniformly bounded
in t ∈ R, then the following Bernshtein inequality holds:

‖B‖ ≤ r(B) · sup
t∈R

‖C(t,B)‖,

where r(B) is the spectral radius of the operator B.
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Proposition 8.1.10 ([27,242]). Let B ∈ B(E). Then the functions C(t,−B2)x and S(t,−B2)y are
uniformly bounded in t ∈ R for any x, y ∈ E iff on E, there exists an equivalent norm ‖ · ‖∗ such that
‖exp(itB)‖∗ ≤ 1 for t ∈ R (such operators B are said to be Hernitian-equivalent on E).

Proposition 8.1.11 ([27,242]). An operator B ∈ B(E) is Hermitian-equivalent on E iff there exists a
constant C > 0 such that

‖ sin(tB)‖ ≤ C, t ∈ R.

Proposition 8.1.12 ([85]). In a Banach algebra B with unit, let a C0-cosine operator function C(·, A),
A ∈ B be given. Then for ν2 > sup

λ∈σ(A)
(|λ| + Reλ)/2, we have

C(t, A) =
1

2πi

∫ ν+i∞

ν−i∞
eλtλR(λ2, A)dλ, t ∈ R+,

S(t, A) =
1

2πi

∫ ν+i∞

ν−i∞
eλtR(λ2, A)dλ, t ∈ R+.

Proposition 8.1.13 ([99]). If for a C0-cosine operator function R(S(t, A)) ⊆ D(A) for t ∈ R and
‖AS(t, A)‖ ≤ const for t ∈ [a, b], a < b, then A ∈ B(E).

Proposition 8.1.14 ([99]). If for a C0-cosine operator function SV
(
C(·, A), t

)
≤ const for a certain

t ∈ R+, then A ∈ B(E).

8.2. Positivity of Perturbation Families

Definition 8.2.1. In the case where E is a Banach lattice with a positive cone E+, we say that a function
L(·) is positive on E if for each t ∈ R+, the operator L(t) is positive (we write L(t) + 0) in the sense that
L(t)E+ ⊆ E+.

In the case where E is a Hilbert space with inner product (·, ·), we say that L(·) is positive (we write
L(t) ≥ 0) if for each t ∈ R+, the operator L(t) is positive in the sense that (L(t)x, x) ≥ 0 for all x ∈ E.

Proposition 8.2.1 ([197]). A C0-cosine operator function C(·, A) dominates I, i.e., C(·, A)−I is positive
in the sense of a Banach lattice or in the sense of a Hilbert space iff the generator A is bounded and positive.

The following propositions are a reformulation of properties of a multiplicative perturbation C0-family
and an additive perturbation C0-family.

Let Fµ
B(·) and Gµ

B(·) be functions defined for B ∈ B(E) by the formulas

Fµ
B(t)x := (A− µ)

∫ t

0
S(s,A)Bxds, x ∈ E, t ∈ R+,

Gµ
B(t)x := B(A− µ)

∫ t

0
S(s,A)xds, x ∈ E, t ∈ R+.

(8.2)

Then Fµ
B(·) is a multiplicative perturbation C0-family and Gµ

B(·) is an additive perturbation C0-family.

Proposition 8.2.2 ([239]). Let E be a Banach lattice. Each multiplicative perturbation C0-family Fµ
B(·)

for a C0-cosine operator function C(·, A) on E defined in (8.2) with µ ≤ 0 and B + 0 is positive iff the
operator A is positive. The same holds for an additive perturbation C0-family.

Proposition 8.2.3 ([239]). Let E be a Hilbert space. Each multiplicative perturbation C0-family Fµ
B(·)

for a C0-cosine operator function C(·, A) on E defined in (8.2) with µ ≤ 0 and B ≥ 0 that commutes with
C(·, A) is positive iff the operator A is positive. The same holds for an additive perturbation C0-family.
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Chapter 9

ALMOST-PERIODIC C0-COSINE OPERATOR FUNCTIONS

Let us recall in brief the definition of almost periodicity of operator functions.

Definition 9.0.1. A function f(·) : R+ → E is said to be almost-periodic if for each ε > 0, the set
J(f, ε) = {τ > 0 : ‖f(t + τ) − f(t)‖ ≤ ε for all t ∈ R+} is relatively dense in R+. That is, there
exists l ∈ R+ such that each subinterval from R+ of length l intersects J(f, ε). An operator function
Q(·) : R+ → B(E) is said to be almost-periodic if for each x ∈ E, the function Q(·)x is almost periodic.

9.1. Almost Periodicity of the Basic Families

Definition 9.1.1. A C0-cosine operator function or a C0-sine operator function are said to be almost-
periodic (a.-p.) or uniformly a.-p. if for any x ∈ E, the functions C(·, A)x or S(·, A)x are a.-p. (uniformly
a.-p.).

Proposition 9.1.1 ([102]). If E is weakly sequentially complete, then a weakly a.-p. C0-cosine operator
function is almost-periodic.

Theorem 9.1.1 ([62]). A C0-cosine operator function C(·, A) is almost-periodic iff the following three
conditions hold:

(i) the C0-cosine operator function C(·, A) is uniformly bounded;
(ii) the spectrum σ(A) ⊆ R−;
(iii) the set of eigenvectors of the generating operator A is total on the space E.
If, moreover, µ ∈ σ(A) is an isolated point of the spectrum, then µ is a simple pole of the resolvent

(λI −A)−1 and E = R(µI −A) ⊕N (µI −A).

Theorem 9.1.2 ([62]). The Cauchy problem (3.1) has an a.-p. generalized solution for any u0, u1 ∈ E
iff conditions (i)–(iii) of Theorem 9.1.1 hold and 0 ∈ ρ(A).

Theorem 9.1.3 ([62]). A C0-cosine operator function C(·, A) and a C0-sine operator function S(·, A)
are uniformly a.-p. iff the following three conditions hold:

(i) the C0-cosine operator function C(·, A) and the C0-sine operator function S(·, A) are uniformly
bounded in t ∈ R;

(ii) the set σ(A) is a harmonic subset in R− and 0 ∈ ρ(A);
(iii) the set of eigenvectors of the generating operator A is total on the space E.

Proposition 9.1.2 ([62]). If a C0-cosine operator function C(·, A) is uniformly a.-p., then σ(A) consists
of simple poles of the resolvent (λI −A)−1. In this case, σ(A) = Pσ(A).

Proposition 9.1.3 ([161]). The following conditions are equivalent:
(i) a C0-cosine operator function C(·, A) is periodic as an operator function;
(ii) the C0-cosine operator function C(·, A) is strongly periodic;
(iii) the C0-cosine operator function C(·, A) is weakly periodic.

Theorem 9.1.4 ([140,205]). A uniformly bounded C0-cosine operator function C(·, A) is periodic with
period 2π iff the following three conditions hold:

(i) the spectrum σ(A) ⊆ {l : l = −k2, k ∈ Z};
(ii) the spectrum σ(A) consists of simple poles of the resolvent;
(iii) the set of eigenvectors of the generator A is total in the space E.
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Under conditions (i)–(iii), the Riesz projections are given by the formulas

P (−k2)x =


1

π

2π∫
0

cos(ks)C(s,A)xds for k �= 0,

1

2π

2π∫
0

C(s,A)xds for k = 0

and, moreover, for x ∈ D(A), we have the relation

C(t, A)x =
∞∑
k=0

cos(kt)P (−k2)x, (9.1)

where the series converges uniformly in t ∈ R .

Proposition 9.1.4 ([140]). In the case where E = H and C(·, A) − 2 is π-periodic, relation (9.1) holds
for all x ∈ E and the convergence of the series is uniform in t ∈ R.

Theorem 9.1.5 ([63]). The function C(t, A)u0+S(t, A)u1 is 2π-periodic for any u0, u1 ∈ E iff conditions
(i)–(iii) of Theorem 9.1.4 hold and 0 ∈ ρ(A).

Proposition 9.1.5 ([140]). A C0-cosine operator function C(·, A) is periodic with period T iff the func-

tion F (z) := (1 − e−Tz)zR(z2, A) can be analytically continued up to an entire function F̃ (z) such that
the following estimate holds for |z| > r:

‖F̃ (z)‖ ≤ Me(q|z|
2−ε), where q,M, r, ε > 0. (9.2)

Proposition 9.1.6 ([221]). The uniformly well-posed Cauchy problem (3.1) has periodic solutions with
period T iff A ∈ C(M, 0) and the function F (z)/z can be analytically continued up to an entire function
Q(z) such that estimate (9.2) for Q(z) holds for |z| > r.

Proposition 9.1.7 ([138]). Let a C0-cosine operator function C(·, A) be given on a Hilbert space H, and
let C(·, A) be weakly a.-p. Then we have the relation C(t, A) = Q−1C(t, V )Q, where V is a self-adjoint
operator given by V :=

∑
λ≥0

λP (λ) and P (λ) is a set of mutually orthogonal projections.

Proposition 9.1.8 ([205]). The periodicity of a C0-cosine operator function C(·, A)x for each x ∈ D(A)
implies the periodicity of C(·, A).

Proposition 9.1.9 ([7]). Let
√
σ(−A) ∩ R+ be a not more than countable set. Then all solutions of

problem (3.1) are almost-periodic iff the following conditions hold:
(i) the C0-cosine operator function C(·, A) is uniformly bounded in t ∈ R;
(ii) 0 ∈ ρ(A);

(iii) for each limit point λ0 ∈
√
σ(A), there is a sequence εn ∈ R converging to zero as n → ∞ such

that s- lim
n→∞

εn(εn + iλ0)

(
(εn + iλ0) · I −A

)−1
x = 0 for each x ∈ E.

Proposition 9.1.10 ([7]). A C0-cosine operator function C(·, A) is a.-p. in the uniform operator topology

iff it is uniformly bounded on R and
√
σ(A) is a harmonic subset of iR.

Proposition 9.1.11 ([7]). Let A ∈ C(M,ω), and let
√
σ(−A) have no limit points in R+. Then:

(i) the linear span of eigenvectors and root vectors of A is dense E if there exists a function χ(t)
such that

‖C(t, A)‖ ≤ χ(t) and χ(t) ≤ C(1 + |t|)γ for t ∈ R, γ ≥ 0; (9.3)

(ii) under the condition lim
t→∞

χ(t)/t = 0, where χ(·) is the function from (9.3), the C0-cosine operator

function C(·, A) is periodic with period 1 iff σ(A) ⊆ {−(2πk)2 : k ∈ N}.
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In [160], asymptotic almost-periodic in the sense of Stepanov operator semigroups and cosine operator
functions were considered.

9.2. Almost-Periodicity of the Families F (·) and G(·)

Proposition 9.2.1. If a continuous function f(·) : R+ → E converges to a certain element ϕ ∈ E as
t → ∞, then

2t−2
∫ t

0
sf(s) ds → ϕ as t → ∞. (9.4)

Proof. It is clear that as in the case of Lemma 6.3.1 (see also [17], Lemma 7.3.1.), it suffices to consider
the case ϕ = 0. We set t = τ + ζ and write

2

t2

∫ t

0
sf(s) ds =

2

(τ + ζ)2

∫ τ

0
sf(s) ds +

2

(τ + ζ)2

∫ τ+ζ

τ

sf(s) ds. (9.5)

Since ∥∥∥∥ 2

(τ + ζ)2

∫ τ+ζ

τ

sf(s)ds

∥∥∥∥ ≤ sup
t≥τ

‖f(t)‖

for all ζ and τ and f(t) → 0 as t → ∞, we can choose τ so large that the second term in (9.5) becomes
less than a certain ε > 0. Then we can choose ζ so large that the first term in (9.5) also becomes less than
ε. This proves (9.4) with ϕ = 0.

The next theorem yields necessary and sufficient conditions for each multiplicative perturbation
C0-family (or each additive perturbation C0-family) to be almost-periodic.

Theorem 9.2.1 ([239]). Each multiplicative perturbation C0-family F (·) for C(·, A) is almost periodic
iff C(·, A) is almost periodic and 0 ∈ ρ(A). The same assertion also holds for an additive perturbation
C0-family.

Proof. Let C(·, A) be slmost-periodic. Then the condition 0 ∈ ρ(A) implies the almost-periodicity of the
function ∫ t

0
S(s,A) ds =

∫ t

0
S(s,A)AA−1ds = (C(t, A) − I)A−1, t ∈ R.

Therefore, Proposition 2.4.1 (iv) implies the almost periodicity of F (·).
Conversely, if each multiplicative perturbation C0-family is almost-periodic, then two particular

multiplicative perturbation C0-families C(t, A) − I and
t∫
0

S(s,A)ds are almost-periodic functions. If

x ∈ N (A), then x = C(s,A)x−
s∫
0

S(u,A)Axdu = C(s,A)x for all s ∈ R+ and x = 2t−2
t∫
0

S(s,A)xds → 0

as t → ∞, since an almost-periodic function is bounded. Therefore, A is injective. Then since an almost-

periodic function is ergodic (see, e.g., [78], p. 21), the limit
1

s

s∫
0

∫ u
0 S(v,A)xdvdu does exist as s → ∞ for

each x ∈ E. By Proposition 9.2.1, the limit

2

t2

∫ t

0
s

1

s

∫ s

0

∫ u

0

∫ v

0
C(τ,A)xdτ dv du ds

exists as t → ∞ for any x ∈ E. Since C(·, A) is uniformly bounded, we have from Proposition 6.3.2 (i.e.,
[240], Theorem 3.7) that R(A) = E. Therefore, 0 ∈ ρ(A).

Remark 9.2.1 ([62]). The assumptions that C(·, A) is almost periodic and 0 ∈ ρ(A) are equivalent to
the condition that each mild solution of the Cauchy problem (3.1) is almost-periodic.

We can deduce the following theorem from Theorem 9.2.1.
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Theorem 9.2.2. Each multiplicative perturbation C0-family F (·) for C(·, A) is periodic iff C(·, A) is
periodic and 0 ∈ ρ(A). In this case, F (·) and C(·, A) have the same period. The same assertion holds for
an additive perturbation C0-family.

Chapter 10

COMPACTNESS IN THE THEORY OF C0-COSINE OPERATOR FUNCTIONS

Compactness properties are widely used in various aspects of the theory of resolving families. We
denote by B0(E) (or B0(E,F ) in the case of distinct spaces) the set of compact operators acting on E.

10.1. Compact Basic Families

Definition 10.1.1. A C0-cosine operator function C(·, A) is said to be compact (we write C(·, A) ∈
B0(E)) if the operator C(t, A) ∈ B0(E) for any t ∈ R+. A C0-sine operator function S(·, A) is said to be
compact if the operator S(t, A) ∈ B0(E) for any t ∈ R.

Proposition 10.1.1 ([273]). If an operator C(t, A) ∈ B0(E) for each t ∈ (α, β) for certain α < β, then
the C0-cosine operator function C(·, A) ∈ B0(E) and the C0-sine operator function S(·, A) ∈ B0(E).

Proposition 10.1.2 ([273]). If an operator S(t, A) ∈ B0(E) for each t ∈ (α, β) and for certain α < β,
then the C0-sine operator function S(·, A) ∈ B0(E), t ∈ R.

Proposition 10.1.3 ([64]). If dimE = ∞, then for no t0 > 0, the operators C(t0, A) and C(2t0, A) can
be compact, simultaneously.

Proposition 10.1.4 ([273]). Under the condition of Proposition 10.1.1, we necessarily have dimE < ∞.

Theorem 10.1.1 ([273]). The following conditions are equivalent:
(i) a C0-sine operator function S(·, A) ∈ B0(E);
(ii) the resolvent (λ2I −A)−1 ∈ B0(E) for any λ with Reλ > ωc(A).

Theorem 10.1.2 ([64]). The following conditions are equivalent:
(i) a generator A ∈ B0(E);
(ii) the operator λ2(λ2I −A)−1 − I ∈ B0(E) for each λ > ωc(A);
(iii) the operator S(t, A) − tI ∈ B0(E) for any t ∈ R;
(iv) the operator C(t, A) − I ∈ B0(E) for any t ∈ R.

Proposition 10.1.5 ([159]). Let C(t, A)− I ∈ B0(E) for any t ∈ R. Then λ(λI−A)−1−µ(µI−A)−1 ∈
B0(E) for all λ, µ ∈ ρ(A) such that Reλ,Reµ > ωc(A).

Proposition 10.1.6 ([159]). Let C(t, A) − I ∈ B0(E) for each t ∈ (α, β) and for certain α < β. Then
C(t, A) − I ∈ B0(E) for any t ∈ R.

Proposition 10.1.7 ([159]). If S(t, A) − tI ∈ B0(E) for each t ∈ (α, β) and for certain α < β, then
S(t, A) − tI ∈ B0(E) for any t ∈ R.

Proposition 10.1.8 ([61]). Let a C0-sine operator function S(t, A) and the operator function C(t, A)−I
be compact for each t ∈ R. Then the space E is necessarily finite-dimensional.

Proof. By our assumptions, it follows from Theorems 10.1.1 and 10.1.2 that the resolvent (λI−A)−1 and
the operator λ(λI − A)−1 − I are compact for certain λ �= 0. This implies that I is a compact operator,
i.e., E is finite-dimensional.

60



Let us define the sets

NBI0 = {t > 0 : the operator C(t, A) has no bounded inverse},

NBI1 = {t > 0 : the operator S(t, A) has no bounded inverse}.

Proposition 10.1.9 ([159]). Let C(t, A)−I ∈ B0(E) for all t ∈ R. Then the sets NBI0 and NBI1 either
are empty, simultaneously, or are infinite of continuum cardinality, and there exist constants α0, α1 > 0
such that NBIj ⊆ (αj ,∞), j = 0, 1.

10.2. Compactness of the Difference of Cosines

Many linear distributed parameter control systems can be reduced to the form

v′(t) = Av(t) + Bu(t), v(0) = v0, t ∈ R+, (10.1)

where A generates a C0-semigroup on the state Hilbert or Banach space E and B is the control operator
acting from control space to the state space. When we design a feedback control u(t) = Fv(t) for some
feedback operator from the state space to the control space, the closed-loop system becomes

v′(t) = (A + BF )v(t), v(0) = v0, t ∈ R+. (10.2)

In the context of the stabilization theory, we want to choose a feedback operator F in order to force
the closed-loop system to possess stability properties that are not enjoyed by the original system. One
important class in physical applications is that of operators F such that BF is compact on the state space.
When BF is compact, it was first proved in [290] that the difference of the semigroups exp ((A + BF )t
and exp(tA) is compact for any positive t. Hence

Eω(A) = Eω(A + BF ), (10.3)

where Eω stands for the essential growth rate of the associated semigroup. Property (10.3) holds for any
two C0-semigroups whenever their difference is compact for some t > 0 (see Theorem 3.52 in [202]). This
is the basis of the compactness method that was used in studying the stabilization of elastic systems (see
[247]) and the spectral property of the transport equation (see [283]). The compactness method was first
formulated in [276] for Hilbert spaces, and later on, it was generalized to Banach spaces in [150]; it says
that a compact perturbation cannot make the system exponentially stable if it is asymptotically but not
exponentially stable.

This leads to the general study of necessary and sufficient conditions for compactness of the difference
of two C0-semigroups. A recent result in [190] says that exp(tA) − exp(tB) is compact for some t > 0 iff
R(λ;A) −R(λ;B) is compact under the norm-continuity assumption.

On the other hand, it is more convenient to be write most of control hyperbolic systems in the form
of a the second-order system instead of a first-order evolution equation in an abstract space (see [20]),
[251]:

v′′(t) = Av(t) + Bu(t), v(0) = v0, v
′(0) = v1, t ∈ R+, (10.4)

System (10.4) can be transferred into the first order equation (3.5); however, there are some problems,
since A does not, in general, generate a C0-semigroup on E × E. In this connection, the problem of
compactness of the difference of two C0-cosine operator functions is of interest. Let C(t, A) and C(t,B)
be two cosine functions on a Banach space E, satisfying ‖C(t, A)‖, ‖C(t,B)‖ ≤ Mew|t|, t ∈ R, for some
constants M,w ≥ 0. Denote ∆A,B(t) = C(t, A) − C(t,B) for all t ∈ R.

Theorem 10.2.1 ([191]). Let ∆A,B(t) be norm-continuous for t > 0. Then for all λ > w2, the operator
R(λ;A) −R(λ;B) is compact iff ∆A,B(t) is compact for t ≥ 0.

We can characterize the norm-continuity in Hilbert space analogously to Theorem 2.5 in [190] and
the proof is just a simple modification.
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Proposition 10.2.1. Let A and B generate cosine functions C(t, A) and C(t,B), respectively, on a
Hilbert space H, and let ‖C(t, A)‖, ‖C(t,B)‖ ≤ Meωt for some constants M ≥ 1, ω ∈ R. Then C(t, A) −
C(t,B) is norm-continuous for t > 0 iff for every σ > ω,

lim
|r|→∞

‖(σ + ir)
(
R((σ + ir)2, A) −R((σ + ir)2, B)

)
‖ = 0

and

lim
n→∞

∫ ∞
n

‖(σ ± ir)
(
R((σ ± ir)2, A) −R((σ ± ir)2, B)

)
x‖2dr = 0,

lim
n→∞

∫ ∞
n

‖(σ ± ir)
(
R((σ ± ir)2, A∗) −R((σ ± ir)2, B∗)

)
y‖2dr = 0

uniformly for x ∈ H, y ∈ H∗ with ‖x‖, ‖y‖ ≤ 1.

Theorem 10.2.2 ([191]). Let S(t, A) and S(t,B) be the corresponding sine functions of C(t, A) and
C(t,B), respectively. Then S(t, A) − S(t,B) is compact for t > 0 iff R(λ;A) − R(λ;B) is compact for
λ > w2.

Now we show a similar result for the cosine as in [190], Proposition 2.7.

Proposition 10.2.2 ([191]). Suppose that ∆A,B(t) is compact for t > 0 and norm-continuous at t = 0.
Then

lim
h→0

‖∆A,B(t + h) − 2∆A,B(t) + ∆A,B(t− h)‖ = 0 for any t ≥ 0. (10.5)

Proof. We have

∆A,B(t + h) + ∆A,B(t− h) − 2∆A,B(t)

=
(
C(t + h,A) + C(t− h,A)

)
−

(
C(t + h,B) + C(t− h,B)

)
− 2∆A,B(t)

= 2C(t, A)C(h,A) − 2C(t,B)C(h,B) − 2∆A,B(t)

= 2
(
C(t, A)C(h,A) − C(h,A)C(t,B)

)
+ 2

(
C(h,A)C(t,B) − C(t,B)C(h,B)

)
− 2∆A,B(t)

= 2C(h,A)∆A,B(t) + 2∆A,B(h)C(t,B) − 2∆A,B(t)

= 2[C(h,A) − I]∆A,B(t) + 2∆A,B(h)C(t,B)

→ 0 as h → 0.

Remark 10.2.1. In the proof of Theorem 10.2.1, we used actually (10.5), but not the norm-continuity
of ∆A,B(·).

Theorem 10.2.3 ([191]). Let ∆A,B(t) be norm-continuous in t at 0. Then ∆A,B(t) is compact for t > 0
iff R(λ;A) −R(λ;B) is compact for λ > w2 and (10.5) holds.

Proposition 10.2.3 ([191]). Suppose that the assumptions of Theorem 12.2.1 (resp. Theorem 12.3.1)
hold. Then ∆A,A(I+B)(t) (resp. ∆A,(I+B)A(t)) is compact for t > 0 iff ∆A,A(I+B)(t) (resp. ∆A,(I+B)A(t))
satisfies (10.5) and R(λ;A) − R(λ;A(I + B)) (resp. R(λ;A) − R(λ; (I + B)A)) is compact for λ large
enough.

We complete this section by comparing the results on the difference of semigroups and cosine operator
functions. We first consider bounded perturbations. It is well known that if A generates a C0-semigroup
exp(tA), then A+B, B ∈ B(E), also generates a C0-semigroup exp(t(A+B)). It was shown in [302] that
exp(t(A + B)) − exp(tA) is norm-continuous for t > 0 if it is compact for t > 0. As for the cosine case,
the compactness hypotheses can be removed.
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Theorem 10.2.4 ([191]). Let A be a generator of a cosine function C(t, A), and let B ∈ B(E). Then
∆A+B,A(t) is norm-continuous in t ∈ R.

Combining Theorems 10.2.1 and 10.2.4, we have the following.

Theorem 10.2.5 ([191]). Let B ∈ B(E), and let A generate a cosine function. Then ∆A+B,A(t) is
compact for t > 0 iff R(λ;A + B) −R(λ;A) is compact for λ large enough.

Proposition 10.2.4 ([191]). Suppose that C0-semigroups exp tA and exp(tB) commute and D(B) ⊆
D(A). Assume that exp(tB) is a C0-group. If Θ(t) := exp(tA) − exp(tB) is compact for all t > 0, then
A = B + K, where the operator K is compact.

Proof. One can write exp(−tB)Θ(t) = exp(−tB) exp(tA) − I, t ∈ R+. By assumption, the operator
exp(−tB) exp(tA) − I is compact for any t > 0, and, moreover, exp(−tB) exp tA is a C0-semigroup with
the generator A−B. It follows from [110] that the operator A−B is compact.

For cosines with bounded generators, we have the following characterization.

Proposition 10.2.5 ([191]). Let B ∈ B(E). Then ∆A,B(t) is compact iff A−B is compact.

Proof. The compactness of ∆A,B(t) for any t > 0 implies (see [284]) that R(µ,A) − R(µ,B) is compact
for some µ. In such a case, the operator I−(µI−B)R(µ,A) is compact. This means that (µI−B)R(µ,A)
is a Fredholm operator of index 0, i.e., it has a closed range R((µI − B)R(µ,A)) = E. Since µI − B is
one-to-one on E, we obtain R(R(µ,A)) = E. By the Banach theorem, µI − A is bounded. Since the

operator A is bounded, we have

∥∥∥∥ 2

t2

t∫
0

S(s,A) ds − I

∥∥∥∥ → 0 as t → 0. Hence the operator
t∫
0

S(s,A) ds is

invertible. If ∆A,B(t) is compact, then B
t∫
0

(S(s,B) − S(s,A)) ds is also compact. Now from

∆A,B(t) = (A−B)

∫ t

0
S(s,A) ds −B

∫ t

0
(S(s,B) − S(s,A)) ds

it follows that the difference A−B is a compact operator.
Conversely, if A−B is a compact operator, then A is bounded and

R(λ,A) −R(λ;B) = R(λ;A)(B −A)R(λ,B)

is compact; therefore, the compactness of ∆A,B(t) follows from Theorem 10.2.1.

In the following example both A and B generate a C0-semigroup and a C0-cosine function. The
operator exp(tA) − exp(tB) is compact for all t > 0, but C(t, A) − C(t,B) is not compact.

Example 10.2.1 ([191]). Let E = l1 and {en} be the standard basis for it, i.e. en = (0, ..., 0, 1, 0, ..., 0, ...),
where 1 is in the nth coordinate. Let

Ax :=
∞∑
n=1

−n(x, en)en, Bx :=
∞∑
n=1

−(n + n2)(x, en)en,

where x = (x1, x2, ..., xn, ...), (x, en) = xn, ‖x‖l1 =
∞∑
i=1

|xi|. Then the C0-semigroups generated by them

are

exp(tA)x =
∞∑
n=1

e−nt(x, en)en, exp(tB)x =
∞∑
n=1

e−(n+n
2)t(x, en)en.

And the C0-cosine functions are given by the formula

C(t, A)x =
∞∑
n=1

cos(nt)(x, en)en, C(t,B)x =
∞∑
n=1

cos(n + n2)t(x, en)en.
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Since e−nt − e−(n+n
2)t → 0 as n → ∞, the operator exp(tA) − exp(tB) can be approximated in norm

by a sequence of operators SN (t)x =
∑N

n=1

(
e−nt − e−(n+n

2)t
)

(x, en)en with ranges of finite dimension.

Therefore, the operator exp(tA) − exp(tB) is compact for t ≥ 0. However, C(t, A) − C(t,B) is not

compact. Indeed, take t = π/2 and choose {yk} := {(δ2k+1n )} ∈ l1, where δji is the Kronecker delta.
Now, for n = 2k + 1, we obtain nt = kπ + π/2 and (n + n2)t = 2k2π + 3kπ + π. Therefore, we have
cos(nt) − cos((n + n2)t) = ±1; if k can be divided exactly by 2, then we choose +; otherwise, we choose
−. Thus,

(C(π/2, A) − C(π/2, B))yk = {[cos(nt) − cos(n + n2)t]δ2k+1n } = {±δ2k+1n },

which means ‖[C(π/2, A)−C(π/2, B)](yk−ym)‖l1 = 2 for k �= m. Therefore, we cannot choose a convergent
subsequence from the sequence {[C(π/2, A) − C(π/2, B)]yk}. Also, we can see that C(t, A) − C(t,B) is

not norm-continuous in t. Indeed, for each t > 0, define sk = t +
1

k + k2
. Then sk → t as k → ∞ and∥∥∥[C(t, A) −C(t,B)] − [C(sk, A) − C(sk, B)]

∥∥∥
B(l1)

=
∥∥∥{[cos(nt) − cos(nsk)] − [cos(n + n2)t− cos(n + n2)sk]}∞n=1

∥∥∥
l∞

≥ 2
∣∣∣ sin

(
k

2
(sk + t)

)
sin

(
k

2
(sk − t)

)
− sin

(
k + k2

2
(sk + t)

)
sin

(
k + k2

2
(sk − t)

) ∣∣∣
= 2

∣∣∣ sin

(
k

2
(sk + t)

)
sin

(
1

2(1 + k)

)
− sin((k + k2)t + 1/2) sin

1

2

∣∣∣.
It is clear that sin

1

2(1 + k)
→ 0 as k → ∞. But sin((k + k2)t + 1/2) does not converge to 0 as k → ∞

for every t > 0! To prove this, we suppose the contrary: sin((k + k2)t + 1/2) → 0 as k → ∞. Then
sin((k + 1 + (k + 1)2)t + 1/2) → 0 k → ∞. Now, since

sin((k + 1 + (k + 1)2)t + 1/2) = sin((k + k2)t + 1/2 + 2(k + 1)t)

= sin((k + k2)t + 1/2)) cos(2(k + 1)t) + cos((k + k2)t + 1/2)) sin(2(k + 1)t),

we obtain sin(2(k + 1)t) → 0 as k → ∞, since cos((k + k2)t + 1/2) cannot converge to 0 according to the
relation sin2 x + cos2 x = 1. Hence sin(2(k + 1 + 1)t) → 0 as k → ∞. Thus, from sin(2(k + 1 + 1)t) =
sin(2(k + 1)t) cos(2t) + cos(2(k + 1)t) sin(2t) we obtain sin(2t) → 0 as k → ∞. Therefore, have t = nπ/2
for some n ∈ N. But for such t, we find that sin((k + k2)t + 1/2)) = ± sin(1/2), which contradicts our
assumption of the convergence to 0. This means that C(t, A) − C(t,B) is not norm-continuous.

The converse does not hold: we have the following.

Proposition 10.2.6 ([191]). Suppose that A and B generate cosine functions C(t, A) and C(t,B). If
C(t, A)−C(t,B) is compact for t > 0, then exp(tA)− exp(tB) is compact. Moreover, if C(t, A)−C(t,B)
is norm-continuous for t > 0, then C(t, A)−C(t,B) is compact for t > 0 iff exp(tA)−exp(tB) is compact.

Proof. Since C(t, A) − C(t,B) is compact, it follows from [284] that S(t, A) − S(t,B) =
t∫
0

(C(s,A) −

C(s,B))ds is also compact, which implies R(λ;A) − R(λ;B) is compact by Theorem 10.2.2. Moreover,
since both exp(tA) and exp(tB) are analytic, exp(tA)−exp(tB) is norm-continuous, and the compactness
of exp(tA) − exp(tB) follows from Theorem 2.3 of [190]. If, in addition, C(t, A) − C(t,B) is norm-
continuous, then the compactness of exp(tA) − exp(tB) implies that R(λ;A) −R(λ;B) is compact. Now
the compactness of C(t, A) − C(t,B) follows from Theorem 10.2.1.

The following extends Proposition 2.7 in [190].
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Proposition 10.2.7 ([191]). Suppose that D(A) ⊆ D(B), where A generates an analytic C0-semigroup
exp(tA) and B is a generator of a C0-semigroup exp(tB). If Θ(t) := exp(tA) − exp(tB) is compact for
t > 0, then Θ(t) is norm-continuous for t ≥ 0.

10.3. Compactness of the Families F (·) and G(·)

Definition 10.3.1. A multiplicative perturbation C0-family F (·) (resp. an additive perturbation C0-
family G(·)) is said to be compact if the operators F (t) (resp. G(t)) are compact for each t ∈ R+.

Proposition 10.3.1. If a C0-sine operator function S(·, A) is compact and if a multiplicative perturbation
family F (·) is norm-continuous at zero, then F (·) is compact. The same is also true for an additive
perturbation C0-family.

Proof. Integrating relation (2.1) in t from 0 up to τ , we obtain∫ τ+h

τ

F (η)xdη −

∫ τ

τ−h
F (η)xdη = 2S(τ,A)F (h)x. (10.6)

The compactness of S(·, A) implies the compactness of the left-hand side of (10.6) for any τ, h ∈ R+. Since
F (·) is uniformly continuous, in (10.6), we can take the derivative in τ without loss of the compactness
property, since the obtained left-hand side (10.6) remains a compact operator. Using the condition
F (0) = 0 and the uniform continuity of F (·) and tending τ to zero, we obtain that F (h) is compact for
each h ∈ R+.

The requirement of the uniform continuity in Proposition 10.3.1 is also necessary, as the following
proposition shows.

Proposition 10.3.2 ([239]). If a multiplicative perturbation family F (·) is compact, then the family F (·)
is uniformly continuous on R+.

Proof. Since F (·) is compact, the Laplace transform F̂ (·) is also compact (see [284]). By formula
(iv) of Proposition 2.4.1, the assertion is proved, since the strong convergence becomes uniform after
postmultiplying by a compact operator.

Proposition 10.3.3 ([239]). Let a C0-cosine operator function C(·, A) on a Banach space E be such
that each of the multiplicative perturbation families F (·) (or the additive perturbation C0-families G(·))
for C(·, A) is compact. Then E is finite-dimensional.

Proof. By assumption, two particular multiplicative perturbation families

F1(t) = C(t, A) − I and F2(t) =

∫ t

0
S(s,A) ds

are compact. Then since we know (see Theorem 10.1.2) that the operator C(t, A) − I is compact for
all t ∈ R+, iff the generator A is compact, the family C(·, A) is norm-continuous on R+. Therefore, the
operator C(0, A) = I, being the limit in norm of compact operators 2t−2F2(t) as t → 0 is compact. This
implies that E is finite-dimensional.

Chapter 11

ADJOINT COSINE OPERATOR FUNCTIONS

Cosine operator functions adjoint in the sense of Phillips were little considered in the literature: on
one hand, because of close analogies with the theory of C0-semigroups of operators, and on the other hand,
because of the absence of very valuable applications. But we essentially use the properties of C(·, A)� in
the perturbation theory when considering the lifting theorems.
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11.1. C0-Cosine Operator Functions Adjoint in the Sense of Phillips

Denote by C(t, A)�, t ∈ R, the restriction C(t, A)∗|E� , t ∈ R, where E� ⊆ E - is the subspace on
which the adjoint family C(·, A)∗ is strongly continuous at zero.

Proposition 11.1.1 ([222]). For a C0-cosine operator function C(·, A) given on E, we have:
(i) if x∗ ∈ D(A∗), then for any t ∈ R,

C(t, A)∗x∗ ∈ D(A∗) and A∗C(t, A)∗x∗ = C(t, A)∗A∗x∗,

and the following relation holds for any x ∈ E:

〈x, (C(t, A)∗ − I∗)x∗〉 =

∫ t

0
(t− s)〈x,C(s,A)∗A∗x∗〉ds;

(ii) the inclusion x∗ ∈ D(A∗) holds iff there exists the limit

w∗- lim
s→0+

(2/s2)(C(s,A)∗ − I∗)x∗ = y∗, and, moreover, A∗x∗ = y∗.

Theorem 11.1.1 ([222]). In the notation of Proposition 11.1.1, we have the following:

(i) the subspace E� = D(A∗), where the closure is understood in the strong topology of the space E∗;
(ii) the subspace E� is invariant with respect to C(t, A)∗, and C(t, A)�, t ∈ R, is a C0-cosine operator

function on E�;
(iii) the generator A� of a C0-cosine operator function C(·, A)� is maximal among the restrictions

of the operator A∗ to E� (i.e., A� is a part of the operator A∗ on E�);
(iv) if E is reflexive, then E� = E∗ and A� = A∗;
(v) for each t ∈ R+, the operator C(t, A)∗ is the w∗-closure of the operator C(t, A)�.

Proposition 11.1.2 ([222]). For any x∗ ∈ D(A∗), we have

‖(C(t, A)∗ − I∗)x∗‖ ≤ (t2/2))‖A∗x∗‖ · sup
0≤s≤t

‖C(s,A)‖.

11.2. Adjoint Families

Definition 11.2.1. An operator function K(t), t ∈ R, given on the space E∗ and satisfying the conditions
K(0) = I∗ on it and the functional cosine equation (see (i) in p. 18), is said to be a w∗-continuous C0-cosine
operator function if for each t ∈ R+, the operator K(t) is continuous on the space E∗ in the w∗-topology
(we write w∗ − w∗-continuous), and for any x∗ ∈ E∗, the function t → K(t)x∗ is w∗-continuous on E∗ in
t ∈ R.

Proposition 11.2.1 ([259]). An operator Q ∈ L(E∗) is w∗−w∗ closed iff it is adjoint to a densely defined
closed operator Q ∈ C(E). Moreover, D(Q) = E∗ iff D(Q) = E, and in this case, both Q and Q are
bounded, and, moreover, ‖Q‖ = ‖Q‖.

Theorem 11.2.1 ([259]). An operator function K(t) on E∗ is a w∗-continuous C0-cosine operator func-
tion iff K(·) = C(·, A)∗, where C(·, A) is a certain C0-cosine operator function. If Q is a generator of
K(t), t ∈ R (in the sense of the w∗-topology) and A is a generator of a C0-cosine operator function
C(·, A), then Q = A∗.

For a w∗-continuous C0-cosine operator function with a generator Q, we accept the notation K(t,Q).

Proposition 11.2.2 ([259]). In the notation of Theorem 11.2.1, the following conditions are equivalent:
(i) an element x∗ ∈ D(Q);
(ii) ‖K(t,Q)x∗ − x∗‖ = O(t2) as t → 0;
(iii) lim

t→0+
t−2‖K(t,Q)x∗ − x∗‖ < ∞.
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Proposition 11.2.3 ([259]). Let Q ∈ L(E∗). An operator Q generates a w∗-continuous C0-cosine oper-
ator function iff it is w∗-densely defined, w∗−w∗-closed, and there exist constants M > 0 and ω > 0 such
that for Reλ > ω, the point λ2 ∈ ρ(Q) and∥∥∥∥ dm

dλm
(λ(λ2I∗ −Q)−1)

∥∥∥∥ ≤
Mm!

(λ− ω)m+1
, m ∈ N.

Proposition 11.2.4 ([259]). If a set D ⊆ D(Q) is w∗-dense in D(Q) and is invariant with respect to a
w∗-continuous C0-cosine operator function K(·, Q), then D is the w∗-core of the operator Q.

Proposition 11.2.5 ([259]). The following conditions are equivalent for w∗-continuous C0-cosine oper-
ator functions K(t,Q1) and K(t,Q2):

(i) the domains D(Q1) ⊆ D(Q2); (ii) ‖(K(t,Q1)−K(t,Q2))x
∗‖ = O(t2) as t → 0 for any x∗ ∈ D(Q1).

Proposition 11.2.6 ([259]). The following conditions are equivalent:
(i) ‖K(t,Q1) −K(t,Q2)‖ = O(t2) as t → 0;
(ii) D(Q1) = D(Q2), and Q2 −Q1 is a bounded operator on D(Q1);
(iii) D(Q1) ⊆ D(Q2), and Q2 −Q1 is a bounded operator on D(Q1);
(iv) D(Q2) ⊆ D(Q1), and Q2 −Q1 is a bounded operator on D(Q2).
Moreover, in these cases,

‖Q2 −Q1‖ ≤ lim
t→0

2t−2‖K(t,Q1) −K(t,Q2)‖ ≤ sup
t∈R+

2t−2‖K(t,Q1) −K(t,Q2)‖,

and, moreover, the equalities are attained, e.g., at contractive w∗-continuous C0-cosine operator functions.

Proposition 11.2.7 ([259]). If K(t,Q1) −K(t,Q2) = o(t2) as t → 0, then

K(t,Q1) = K(t,Q2), t ∈ R.

Proposition 11.2.8 ([259]). For a w∗-continuous C0-cosine operator function K(t,Q), t ∈ R, we have

N (Q) =
⋂
t>0

N
(
K(t,Q) − I∗

)
,

and w∗- cl(R(Q)) is w∗- cl(
⋃

t>0R
(
K(t,Q) − I∗

)
).

If E is a Grothendieck space, then

R(Q) = w- cl

(⋃
t>0

R
(
K(t,Q) − I∗

))
= span{R(K(t,Q) − I∗) : t ∈ R+},

where the closure is understood in the strong topology of E∗.

Introduce the following notation:

Q1s := s- lim
t→∞

t−1S(t, A)∗, Q1w := w- lim
t→∞

t−1S(t, A)∗, Q1w∗ := w∗- lim
t→∞

t−1S(t, A)∗.

Proposition 11.2.9 ([259]). Assume that for Q = A∗, the following conditions hold:
(a) ‖S(t, A)‖ = O(t) as t → ∞;

(b) w∗- lim
t→∞

t−1

(
(K(t + s,Q) −K(t− s,Q)

)
S(s,A)∗x∗ = 0 for all x∗ ∈ E and s ∈ R+.

Then:
(i) Q1s ⊆ Q1w ⊆ Q1w∗ are projections, and, moreover,

‖Q1w∗‖ ≤ limt→∞t
−1‖S(t, A)‖, and D(Q1s) ⊆ D(Q1w) and D(Q1w∗)

are strongly closed;
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(ii) R(Q1s) = R(Q1w) = R(Q1w) = N (Q), N (Q1s) ⊆ N (Q1w) ⊆ R(Q) and

Sp := span{R(K(t,Q) − I∗) : t > 0} ⊆ N (Q1w∗) ⊆ w∗- cl(R(Q)).

If we replace condition (b) by a stronger condition (b′) s- lim
t→∞

1

t

(
K(t + s,Q) −K(t− s,Q)

)
S(s,A)∗ = 0

for all s ∈ R+, then Sp ⊆ N (Q1s).

Proposition 11.2.10 ([259]). Let conditions (a) and (b) of Proposition 11.2.9 hold, and let E be a
Grothendieck space. Then

R(Q1w∗) = N (Q), N (Q1w∗) = R(Q) and D(Q1w∗) = N (Q) ⊕R(Q) = E∗.

If, in addition, the condition (b′) holds, then K(·, Q) is strongly (C, 1) ergodic, i.e., D(Q1s) = E∗.

Definition 11.2.2. Denote by Q2s, Q
2
w, and Q2w∗ the Cesaro (C, 2)-averagings of the Cesaro (C, 1)-

averagings Q1s, Q
1
w, and Q1w∗ defined in the corresponding way.

Proposition 11.2.11 ([259]). Let ‖T (t, A)‖ = O(t2) as t → ∞, and let s- lim
t→∞

t−2K(t,Q)x∗ = 0 for all

x∗ ∈ D(Q). Then Q2s = Q2w ⊆ Q2w∗ are bounded projections such that

‖Q2w∗‖ ≤ lim
t→∞

2t−2‖T (t, A)‖, R(Q2s) = R(Q2w∗) = N (Q),

R(Q) = N (Q2s) ⊆ N (Q2w∗) ⊆ w∗- cl(R(Q)).

The subspaces D(Q2s) and D(Q2w∗) are strongly closed in E∗, and

D(Q2s) = N (Q) ⊕R(Q) = {x∗ ∈ E∗ : ∃ tn → ∞ : lim
n→∞

2t−2n T (tn)x∗ exists}.

Proposition 11.2.12 ([259]). Let

Gx∗ := s- lim
t→0+

t−1S(t, A)∗x∗

for those x∗ ∈ E∗ for which the limit exists. Then for a w∗-continuous C0-cosine operator function K(·, Q)
with Q = A∗, we have

D(G) =
⋃
t>0

R(S(t, A)∗) = {x∗ ∈ E∗ : ∃ tn → ∞ : w∗- lim
n→∞

t−1n S(tn, A)∗x∗ exists}.

Moreover, G = ID(G).

Chapter 12

PERTURBATIONS OF C0-COSINE OPERATOR FUNCTIONS

The perturbation theory of C0-cosine operator functions differs from that of C0-semigroup in an
interesting way. On one hand, the generating operator of a C0-cosine operator function lies in a more
narrow class of operators than G(M,ω); for example, it always generates an analytic C0-semigroup, and,
therefore, its fractional powers (−A)α, 0 ≤ α ≤ 1 are defined in a sufficiently simple way. On the other
hand, it is not clear since now whether the M. Watanabe perturbation is the strongest perturbation or
not, and what happens with SV of a multiplicative perturbation family if SV (F (·), t) = O(tα), t → 0+,
for a certain 0 < α < 1.
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12.1. General Multiplicative Theorems

We quote the following theorem (see [192], Theorem 3.10) for C(·, A), which is convenient for practical
applications and which will be repeatedly used below.

Theorem 12.1.1. A C0-cosine operator function C(·, A) satisfying the estimate ‖C(t, A)‖ ≤ Meωt for
all t ≥ 0 is a C0-cosine operator function with a generator A iff the condition λ > ω implies λ2 ∈ ρ(A)
and we have

λ(λ2I −A)−1 =

∫ ∞
0

e−λtC(t, A) dt.

Proposition 12.1.1 ([240]). Let A be a densely defined closed linear operator on a Banach space E, and
let - ∈ B(X). The following assertions hold:

(i) if the operator -A generates a cosine operator function C̃(·, A), then the operator A- also gen-
erates a C0-cosine operator function;

(ii) if the operator A- generates a cosine operator function Ĉ(·, A), and for a certain real λ, the
operator λ−-A is invertible, then the operator -A also generates a C0-cosine operator function;

(iii) if the operator A- generates a cosine operator function Č(·, A) and D((A-)∗) = D(A∗), then
the operator -A also generates a C0-cosine operator function.

Definition 12.1.1. We say that an operator - ∈ B(E) belongs to the class M1(A) of multiplicative
perturbations of the generator A of a C0-cosine operator function C(·, A) if the operator B = - − I
satisfies the following Condition (M1):

for all continuous functions f ∈ C([0, t];E)

(M1a)
t∫
0

S(t− s,A)B f(s)ds ∈ D(A),

(M1b)

∥∥∥∥A t∫
0

S(t− s,A)Bf(s)ds

∥∥∥∥ ≤ MγB(t)‖f‖[0,t],

where γB : [0,∞) → [0,∞) is some continuous nondecreasing function with γB(0) = 0 and ‖f‖[0,t] =
sup
0≤s≤t

‖f(s)‖.

Remark 12.1.1. If B+I ∈ M1(A), then ‖C(t+h,A)B−C(t, A)B‖ → 0 as h → 0 for any t. To see this,
we first set f(t) = x for t ≥ 0 in (M1b). It follows that ‖(C(h,A) − I)B‖ → 0 as h → 0. This, together
with the fact that (C(·, A) − I)B is a C0-family of multiplicative perturbations, proves the assertion.

Theorem 12.1.2 ([240]). Let A be the infinitesimal generator of a C0-cosine operator function C(·, A)
on E. If an operator - belongs to M1(A), then both A- and -A are generators of C0-cosine operator
functions. Moreover, the C0-cosine operator function .(·) generated by A- satisfies ‖.(t) − C(t, A)‖ =
O(γB(t)) (t → 0+).

Remark 12.1.2. (i) If (M1a) and (M1b) hold for all functions in a dense subset of C([0, t];E), then
because of the closedness of A, we easily see that they actually hold for all f in C([0, t];E). Hence since
(M1a) holds for all f in C1([0, t];E), which is dense in C([0, t];E), Condition (M1) can be replaced by
the equivalent condition:∥∥∥∥A∫ t

0
S(t− s,A)Bf(s)ds

∥∥∥∥ ≤ MγB(t)‖f‖[0,t] for all f ∈ C1([0, t];E). (12.1)

Thus, we only need to verify Condition (M1′) in practical applications.
(ii) If (M1) holds with some γB(t) = o(t2), then .(·) ≡ C(·, A) (see [240, Corollary 3.6]), so that

A(I + B) = A and AB=0. Conversely, the latter condition implies C(·, A)B = B, and hence A
t∫
0

S(t −
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s,A)Bf(s)ds ≡ 0 for all f ∈ C([0, t],X). Thus, (M1) holds with some γB(t) = o(t2) iff AB = 0, and in
this case, (M1) actually holds with γB(·) ≡ 0.

Let (Z, | · |) be a Banach space satisfying Condition (Z) with respect to C(·, A):
(Za) Z is continuously embedded in E,
(Zb) for all continuous functions φ ∈ C([0, t], Z),∫ t

0
S(t− s,A)φ(s)ds ∈ D(A),

(Zc)

∥∥∥∥A t∫
0

S(t− s,A)φ(s)ds

∥∥∥∥ ≤ γ(t) sup
0≤s≤t

|φ(s)|Z ,

where γ(·) : [0,∞) → [0,∞) is a continuous nondecreasing function with γ(0) = 0.
It is easy to verify Condition (Z) for the spaces D(A) and the Favard class (FavC(·,A), | · |FavC(·,A)).

Indeed, if Z = D(A), then (Z) holds with γ(t) = O(t2) as t → 0+.

Corollary 12.1.1. If Z is a Banach space satisfying Condition (Z), then I +B(E,Z) ⊆ M1(A), so that
for every B ∈ B(E,Z), both A(I + B) and (I + B)A are generators of C0-cosine operator functions.

Definition 12.1.2. We say that an operator - ∈ B(E) belongs to the class M2(A) of multiplicative
perturbations of the generator A of a C0-cosine operator function C(·, A) if the operator B = - − I
satisfies

δB(t) := sup
{∫ t

0
‖BS(s,A)Ax‖ds : x ∈ D(A), ‖x‖ ≤ 1

}
→ 0 as t → 0+. (12.2)

Remark 12.1.3. As was shown by Fattorini [130], in the case of E = Lp, we have ‖AS(t, A)x‖ = O(t2α−1)
as t → 0 for 1/2 ≤ α ≤ 1 and x ∈ D((A − cI)α). Therefore, - ∈ M2(A), e.g., if B = (A − cI)−β for
β ≥ 1/2.

Theorem 12.1.3 ([240]). Let A be the infinitesimal generator of a C0-cosine operator function C(·, A)
on E. If an operator - belongs to M2(A), then both -A and A- are generators of C0-cosine operator
functions. Moreover, the cosine function C1(·) generated by -A satisfies ‖C1(t)−C(t, A)‖ = O(δB(t)) (t →
0+).

12.2. Perturbations by the Family F (·)

For any fixed λ and an operator B ∈ B(E), let FB,λ(·) and GB,λ(·) be the functions defined by

FB,λ(t)x := (λ2 −A)

∫ t

0
S(s,A)Bxds = λ2

∫ t

0
S(s,A)Bxds− (C(t, A) − I)Bx, x ∈ E, t ≥ 0, (12.3)

GB,λ(t)x := B(λ2 −A)

∫ t

0
S(s,A)xds = λ2B

∫ t

0
S(s,A)xds−B(C(t, A) − I)x, x ∈ E, t ≥ 0. (12.4)

Definition 12.2.1. Operator function f(·) is called a function with a locally bounded semivariation if for
some t > 0,

SV(f(·), t) := sup

{∥∥∥∥ n∑
j=1

[f(tj) − f(tj−1)]xj

∥∥∥∥ : xj ∈ E, ‖xj‖ ≤ 1

}
< ∞,

where the supremum is taken over all partitions of the interval [0, t]. Operator function f(·) is called a
function with a locally bounded strong variation if for some t > 0 and all x ∈ E,

Var(f(·)x, t) := sup

{ n∑
j=1

∥∥∥∥(f(tj) − f(tj−1))x

∥∥∥∥ : 0 = t0 < t1 < · · · < tn = t, n ≥ 1

}
< ∞.
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Finally, operator function f(·) is called a function with a locally bounded uniform variation if for some
t > 0,

Var(f(·), t) := sup

{ n∑
j=1

∥∥∥∥(f(tj) − f(tj−1))

∥∥∥∥ : 0 = t0 < t1 < · · · < tn = t, n ≥ 1

}
< ∞.

The next theorem gives a characterization of M1(A) in terms of the semivariation of FB,λ(·).

Theorem 12.2.1 ([240]). An operator - ∈ B(E) belongs to M1(A), i.e., B = - − I satisfies Condition
(M1), iff SV (FB,λ(·), t) = o(1) (t → 0+) for some (and all) λ > ω. Moreover, in Condition (M1b), one
can choose γB(t) = SV (FB,λ(·), t) in the case SV (FB,λ(·), t) = O(t2), and γB(t) = O(t2) in the case
SV (FB,λ(·), t) = o(t2).

Now, from Theorem 12.2.1, we can deduce the following theorem on an additive perturbation.

Theorem 12.2.2. Let A be the generator of a C0-cosine operator function C(·, A) on E. If P ∈
B(D(A), E) is such that ∫ t

0
S(t− s,A)Pg(s)ds ∈ D(A), (12.5)

‖A

∫ t

0
S(t− s,A)Pg(s)ds‖ ≤ γP (t) sup

0≤s≤t
‖g(s)‖D(A) (12.6)

for all g ∈ C([0, t],D(A)) and for some function γP (·) with γP (t) = o(1) (t → 0+), then the operators
A + P and A + (A− λI)P (A− λ)−1 (λ > ω) are generators of C0-cosine operator functions.

Proof. Without loss of generality, we may assume that A is invertible, so that A + P = (I + PA−1)A.
In view of Theorem 12.2.1, we only have to verify Condition (M1) for the operator B = PA−1. Indeed,
if f ∈ C([0, t];E), then A−1f ∈ C([0, t],D(A)), so that, setting g = A−1f in (12.5) and (12.6), we have∫ t

0
S(t− s,A)Bf(s)ds =

∫ t

0
S(t− s,A)P (A−1f)(s)ds ∈ D(A)

and

‖A

∫ t

0
S(t− s,A)Bf(s)ds‖ ≤ γP (t) sup

0≤s≤t
‖A−1f(s)‖D(A) ≤ γP (t)(‖A−1‖ + 1)‖f‖[0,t].

Corollary 12.2.1. Let A be the generator of a C0-cosine operator function C(·) on E. If P is a contin-
uous operator acting from D(A) to Z (Z being a Banach space satisfying condition (Z)), then A+P and
A + (A− λ)P (A− λ)−1 (λ > ω) are generators of C0-cosine operator functions.

Proof. Suppose P ∈ B(D(A), Z), and let g ∈ C([0, t],D(A)). Then we have Pg ∈ C([0, t];Z), and by

Condition (Z),
t∫
0

S(t− s,A)Pg(s)ds ∈ D(A) and

‖A

∫ t

0
S(t− s)Pg(s)ds‖ ≤ γP (t) sup

0≤s≤t
|Pg(s)|Z ≤ γP (t)‖P‖B(D(A),Z) sup

0≤s≤t
‖g(s)‖D(A).

The conclusion now follows from Theorem 12.2.2.

12.3. Perturbations by the Family G(·): Additive Perturbations

The following theorem gives a characterization of M2(A) in terms of the strong variation of GB,λ(·)
for x ∈ D(A); more precisely, by

β(GB,λ(·), t) := sup{Var(GB,λ(·)x, t); x ∈ D(A), ‖x‖ ≤ 1}. (12.7)
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Theorem 12.3.1 ([240]). An operator - ∈ B(E) belongs to M2(A), i.e., B = - − I satisfies Condition
(M2), iff β(GB,λ(·), t) = o(1) (t → 0+) for some (and all) λ > ω. Moreover, β(GB,λ(·), t) and the function
δB(t) in condition (M2) has the same order of convergence at zero whenever the order does not exceed
O(t2).

Proof. From (12.4), we see that

Var(GB,λ(·)x, t) = Var(BC(·, A)x, t) + λ2‖B‖

∫ t

0
‖S(s,A)x‖ds

if the variation exists. Since for x ∈ D(A),

Var(BC(·, A)x, t) =

∫ t

0

∥∥∥∥ d

ds
BC(s,A)x

∥∥∥∥ds =

∫ t

0
‖BS(s,A)Ax‖ds,

we have

‖β(GB,λ(·), t) − δB(t)‖ ≤ λ2‖B‖

∫ t

0
‖S(s,A)‖ds ≤ λ2‖B‖Meωtt2.

Hence δB(t) tends to 0 as t → 0+ iff β(GB,λ(·), t) does. They have the same order of convergence at zero
whenever one of them has the order less than or equal to O(t2).

In general, M1(A) and M2(A) are proper subsets of I + B(E). Each of the conditions M1(A) =
I + B(E) and M2(A) = I + B(E) is equivalent to the condition that A is bounded. Indeed, if for every
B ∈ B(E), the operator (I + B)A generates a cosine operator function, then for B = −2I, we have that
−A also generates a C0-cosine operator function. Hence both A and −A generate analytic C0-semigroups
and, consequently, A is bounded.

From Theorem 12.3.1, we deduce the following additive perturbation theorem.

Theorem 12.3.2 ([240]). Let A be the generator of a cosine operator function C(·) on E. If P is an
operator satisfying the following conditions:

D(A) ⊂ D(P ) and P (λ2 −A)−1 ∈ B(E) for some λ > ω; (12.8)

θP (t) := sup

{∫ t

0
‖PS(s)x‖ds;x ∈ D(A), ‖x‖ ≤ 1

}
< 1 for some t > 0, (12.9)

then the operators A + P and A + (A− λI)P (A − λI)−1 are generators of C0-cosine operator functions.
Moreover, the C0-cosine function C1(·) generated by A+P satisfies ‖C1(t)−C(t, A)‖ = O(θP (t)) (t → 0+).

Proof. We may assume that A is invertible, so that A + P = (I + PA−1)A. We set B = PA−1. Then∫ t

0
‖BS(s)Ax‖ds ≤

∫ t

0
‖PS(t)x‖ds

for all x ∈ D(A). Hence (12.9) implies δB(t) ≤ θP (t) < 1 for some t > 0, and the conclusion follows from
Theorem 12.3.1.

From Theorem 12.2.2, we can deduce the following perturbation theorem of Watanabe ([287, Theo-
rem 2]).

Corollary 12.3.1 ([240]). Let A be the generator of a C0-cosine operator function C(·, A) on E. If
P ∈ B(E1, E), then A + P and A + (A − λI)P (A − λI)−1 (λ > ω) are generators of C0-cosine operator
functions. Moreover, the cosine function C1(·) generated by A + P satisfies ‖C1(t) − C(t, A)‖ = O(t)
(t → 0+).

Proof. It is proved in [255] that P ∈ B(E1, E) implies (12.8). To show (12.9), let x ∈ D(A). Then for
t ∈ [0, 1], we have

‖PS(t, A)x‖ ≤ ‖P‖B(E1,E)‖S(t, A)x‖E ≤ ‖P‖B(E1,E)
[
‖S(t, A)x‖ + sup

0≤η≤1
‖AS(η,A)S(t, A)x‖

]
≤ K‖x‖.
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Therefore, θP (t) = O(t) (t → 0+), and hence the conclusion follows from Theorem 12.3.2.

From Theorem 12.3.2, we can also deduce the following corollary: when a = ∞, it is Theorem A in
[262] (see also [255, Corollary 2.1]), and when a < ∞, it is Corollary 2.2 in [255], which contains Theorem
3.2 in [262].

Corollary 12.3.2 ([240]). Let A be the generator of a C0-cosine operator function on E. Let P be an
operator satisfying conditions (12.8), and let

L(λ) := sup

{∫ a

0
e−λs‖PS(s,A)x‖ds; x ∈ D(A), ‖x‖ ≤ 1

}
< ∞ (12.10)

for some a ∈ (0,∞] and λ > ω. Let L(∞) := lim
λ→∞

L(λ). Then for each ε with |ε| < L(∞)−1, A+ εP and

A + ε(A− λI)P (A− λI)−1 (λ > ω) are generators of C0-cosine operator functions.

Proof. Choose numbers 0 < µ < µ1 < µ2 < 1 such that |ε| = µL(∞)−1. Fix λ so large that L(λ)/L(∞) <
µ1
µ

, and then fix t ∈ (0, a) so small that eλt <
µ2
µ1

. Then for all x ∈ D(A) with ‖x‖ ≤ 1, we have∫ t

0
‖εPS(s,A)x‖ds ≤ |ε|eλt

∫ t

0
e−λs‖PS(s,A)x‖ds ≤ |ε|eλtL(λ) = eλtµL(λ)/L(∞) ≤

µ2
µ1

µ
µ1
µ

= µ2 < 1,

i.e., θεP (t) < 1. Now the conclusion follows from Theorem 12.3.2.

From this corollary, Shimizu and Miyadera were able to deduce a generalization ([262, Corollary 2.2])
of the perturbation theorem of Fattorini [137] and Travis and Webb [275]. The latter theorem states that
if a closed operator P satisfies D(A) ⊂ D(P ) and PS(·, A)x ∈ C([0, 1];E) for every x ∈ E, then A+P is
the generator of a C0-cosine operator function. This is also an immediate consequence of Theorem 12.3.2,
as it is clear that θP (t) = O(t) (t → 0+).

Next, we consider mixed-type perturbations induced by a C0-family of multiplicative perturbations
and a C0-family of additive perturbations. Thus, the following two theorems follow immediately from
Theorems 12.2.1, 12.3.1, and Corollary 12.3.1.

Theorem 12.3.3 ([240]). If a C0-family of multiplicative perturbations F (·) for C(·, A) is locally of

bounded semivariation and if SV (F (·), t) = o(1) (t → 0+), then the operator A1 := A(I−λF̂ (λ))+λ3F̂ (λ),
λ > ω, is the infinitesimal generator of some cosine operator function C1(·).

Theorem 12.3.4 ([240]). If a C0-family of additive perturbations G(·) for C(·, A) is locally of bounded

strong variation and if β(F (·), t) = o(1) (t → 0+), then the operator A2 := (I−λĜ(λ))A+λ3Ĝ(λ), λ > ω,
is the infinitesimal generator of some C0-cosine operator function C2(·).

12.4. Comparison of Cosine Operator Functions

In this section, we give some characterizations of the property that ‖C1(t, A1) − C(t, A)‖ = O(t2)
(t → 0+).

Theorem 12.4.1 ([240]). Let C(·, A) be a C0-cosine operator function with a generator A, and let A1 be
a linear operator. The following statements are equivalent:

(i) A1 generates a C0-cosine operator function C1(·, A1) that satisfies

‖C1(t, A1) − C(t, A)‖ = O(t2) (t → 0+);

(ii) there exists B ∈ B(E,FavC(·,A)) such that A1 = A(I −B) + λ2B for some λ > ω;
(iii) there exists a B ∈ B(E) such that the function F (·) ≡ FB,λ(·) defined in (12.3) is square Lipschitz

continuous and A1 = A(I − λF̂ (λ)) + λ3F̂ (λ);
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(iv) A1 generates a C0-cosine operator function C(·, A1), D(A∗1) = D(A∗), and A∗1−A∗ is a bounded
operator acting from D(A∗) to E∗;

(v) A1 generates a C0-cosine operator function C(·, A1) and

‖(λ2I −A1)
−1 − (λ2I −A)−1‖ = O(λ−4) (λ → ∞).

Proof. The proof of (i) ⇒ (ii) is similar to the proof for C0-semigroups. Let B be the operator defined
by Bx := x− (λ2 −A)−1(λ2 −A1)x for x ∈ D(A1). Since for all x ∈ D(A1),

‖Bx‖ = lim
η→0

‖x− λ2(λ2I −A)−1x +
2

η2
(λ2I −A)−1(C(η,A1)x− x)‖

= lim
η→0

‖x− λ2(λ2I −A)−1x +
2

η2
(λ2I −A)−1(C(η,A)x− x)

−
2

η2
(λ2I −A)−1(C(η,A)x −C(η,A1)x)‖

≤ lim
η→0

‖(λ2I −A)−1‖
2

η2
‖C(η,A) − C(η,A1)‖ ‖x‖ ≤ K‖(λ2I −A)−1‖ ‖x‖,

where B is bounded and can be extended to a bounded operator (still denoted by B) on the whole space
E. To show that B maps E to FavC(·,A) continuously, we set y = Bx for x ∈ D(A1). Then

lim sup
η→0

2

η2
‖C(η,A)y − y‖ ≤ lim sup

η→0

2

η2
(
‖(λ2η2 − C(η,A) + I)(x + y) − (λ2η2 − C1(η,A1) + I)x‖

+‖C(η,A)x− C1(η,A1)x‖
)

+ 2λ2‖y‖ ≤ K‖x‖ + 2λ2‖y‖ ≤ K(1 + 2λ2‖(λ2 −A)−1‖)‖x‖,

so that |Bx|FavC(·,A) ≤ K(1 + (1 + 2λ2)‖(λ2 − A)−1‖)‖x‖ for all x ∈ D(A1) (and hence for all x ∈ E).

From (λ2 − A)(x − Bx) = (λ2 − A1)x, we have A1x = A(I − B)x + λ2Bx for all x ∈ D(A1), i.e.,
A1 ⊆ A(I−B)+λ2B. Since FavC(·,A) satisfies Condition (Z), Corollary 12.1.1 implies that A(I−B)+λ2B
is the generator of a C0-cosine operator function and hence coincides with A1.

Taking the Laplace transform of F (·), we obtain F̂ (µ) = λ2µ−1(µ2−A)−1B−µ(µ2−A)−1B+µ−1B,

so that B = λF̂ (λ). Further, using (12.3), for all x ∈ E, we have

| ‖F (t)x‖ − ‖(C(t, A) − I)Bx‖ | ≤ ‖λ2
∫ t

0
S(s,A)Bxds‖ = O(t2) (t → 0+),

which implies that B ∈ B(E,FavC(·,A)) iff ‖F (t)‖ = O(t2) (t → 0+). Hence (ii) and (iii) are equivalent.

(iii) ⇒ (i). In view of Theorem 12.3.3, we need only to show that if F (t) = O(t2) (t → 0+),
then V ar(F (·), t) = O(t2) (t → 0+). But, because of (12.3), this is equivalent to showing that
‖(C(t, A) − I)B‖ = O(t2) (t → 0+) implies V ar(C(·, A)B, t) = O(t2) (t → 0+). Therefore, we sup-
pose that ‖(C(s,A)− I)B‖ ≤ Ks2 for 0 ≤ s ≤ τ . For any subdivision {t0, t1, · · · , tn} of [0, t] ⊆ [0, 1] with
hi = ti − ti−1 ≤ τ , let ni be the largest integer such that nihi ≤ ti. One has

C(ti, A) − C(ti−1, A) = C(ti−1, A) −C(ti−1,A − C(ti − ti−1)) + 2C(ti−1, A)(C(ti − ti−1, A) − I),

and, therefore,

‖C(ti, A) − C(ti−1, A)‖ ≤ ‖C(ti − nihi, A) − C((ni + 1)hi − ti, A)‖ + 2KMeωtnih
2
i

≤ 2KMeωt(ni + 2)h2i ≤ 4KMeωtthi.

Therefore,
n∑

i=1

‖C(ti, A) − C(ti−1, A)‖ ≤ 4KMeωtt

n∑
i=1

hi ≤ 4KMeωtt2.

Hence Var(C(·, A)B, t) = O(t2) (t → 0+).
(i) ⇔ (iv) is proved in ([238, Theorem 3.5]).

74



To prove (iv) ⇒ (v), we write

‖(λ2I −A1)
−1 − (λ2I −A)−1‖ = ‖(λ2I −A∗1)

−1(A∗1 −A∗)(λ2I −A∗)−1‖

≤ ‖(λ2I −A1)
−1‖‖A∗1 −A∗‖‖(λ2I −A)−1‖ = O

(
1

λ4

)
.

Finally, to prove (v) ⇒ (i), we write (see [238, Theorem 3.9])

‖C(t, A1)x− C(t, A)x‖ = lim
λ→∞

λ4‖(λ2I −A1)
−1(C(t, A1) − C(t, A))(λ2I −A)−1x‖

≤ lim
λ→∞

‖

∫ t

0
S(t− s,A1)λ

4((λ2I −A1)
−1 − (λ2I −A)−1)C(s,A)xds‖ ≤ Kt2‖x‖.

Hence mixed type perturbations of the form A1 = A(I − B) + λ2B with B ∈ B(E,FavC(·,A))

characterize those C0-cosine functions C1(·, A1) which satisfy ‖C(t, A1) − C(t, A)‖ = O(t2) (t → 0+). In
this case, although D(A∗1) = D(A∗), the domain of A1 may not contain the domain of A. What kind of
C0-cosine operator functions C(·, A1) have the property that D(A) ⊆ D(A1) and ‖C(t, A1) − C(t, A)‖ =
O(t2) (t → 0+)? It is clear that additive perturbations of A by bounded operators generate cosine functions
with this property.

Theorem 12.4.2. Let C(·, A) be a cosine operator function with the generator A. For any operator A1,
the following statements are equivalent:

(i) D(A) ⊆ D(A1), and A1 generates a C0-cosine operator function C1(·) such that

‖C1(t, A1) − C(t, A)‖ = O(t2) (t → 0+);

(ii) there exists an operator B ∈ B(E) such that R(B∗) ⊆ FavC∗(·,A) and A1 = (I −B)A + λ2B for
some λ > ω;

(iii) there exists B ∈ B(E) such that the function G(·) ≡ GB,λ(·) defined in (12.4) is square Lipschitz

continuous at 0 and A1 = (I − λĜ(λ))A + λ3Ĝ(λ);
(iv) A1 = A + Q for some Q ∈ B(E).

Proof. (iv) ⇒ (1) is obvious. We first prove (i) ⇒ (ii)+(iv). Since D(A) ⊆ D(A1), we can define the
bounded operator B := I − (λ2I − A1)(λ

2I − A)−1 = (A1 − A)(λ2I − A)−1 for λ > ω. Then we have
A1x = (I −B)Ax + λ2Bx for x ∈ D(A). Using (12.4), we can write

G(t)x = (A1 −A)

∫ t

0
S(s,A)xds, x ∈ E, t ≥ 0.

Since ‖(A1 −A)x‖ ≤ lim
t→0+

2

t2
‖(C(t, A1)−C(t, A))x‖ ≤ K‖x‖ for all x ∈ D(A), the operator A1 −A has a

bounded extension Q ∈ B(E). Thus (iv) holds. This also implies

‖G(t)x‖ ≤ V ar(G(·)x, t) ≤ ‖Q‖

∫ t

0
‖S(s,A1)x‖ds ≤ ‖Q‖Meωtt2‖x‖, x ∈ E,

so that ‖G(t)‖ ≤ β(GB,λ(t) = O(t2). It follows from Theorems 12.2.1 and 12.1.3 that (I −B)A + λ2B is
a generator of cosine function, and hence it coincides with A1. Further, using (12.4) for all x∗ ∈ E∗, we
have

| ‖G∗(t)x∗‖ − ‖(C∗(t, A) − I∗)B∗x∗‖ | ≤ ‖λ2
∫ t

0
S∗(s,A)B∗x∗ds‖ = O(t2) (t → 0+).

Hence ‖G(t)‖ = O(t2) (t → 0+) iff R(B∗) ⊆ FavC∗(·,A). In particular, this completes the proof of (ii).

To prove (ii) ⇔ (iii), it remains to show that B = λĜ(λ). This can be done by taking Laplace
transform of GB,λ(·) in (12.4).
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(iii) ⇒ (i). It suffices to show that R(B∗) ⊆ FavC∗(·,A) implies the boundedness of BA. Indeed, for
all x ∈ D(A) with ‖x‖ ≤ 1 and for all x∗ ∈ E∗, we have

|〈BAx, x∗〉| = | lim
t→0

2t−2〈(C(t, A) − I)x,B∗x∗〉| ≤ lim
t→0

2t−2‖(C∗(t, A) − I∗)B∗x∗‖.

The uniform boundedness principle implies that {BAx : x ∈ D(A), ‖x‖ ≤ 1} is bounded. Hence the
operator BA is bounded on D(A).

12.5. Preservation of Properties under Additive Perturbations

This section contains, as a rule, known facts. However, they have appeared historically first and,
moreover, in this section some useful relations are formulated explicitly.

Proposition 12.5.1 ([222,287]). Let A ∈ C(M,ω), and let B ∈ B(E). Then the operator A+B generates
a C0-cosine operator function and ‖C(t, A + B) − C(t, A)‖ → 0 as ‖B‖ → 0 uniformly on any compact
set in R.

Proposition 12.5.2 ([221]). Under the conditions of Proposition 12.5.1, if ω̃ > ω + M
ω ‖B‖, then there

exists a number M̃ = M̃(ω) such that

‖C(t, A + B)‖ ≤ M̃eω̃|t|, t ∈ R. (12.11)

Proposition 12.5.3 ([131]). Let A ∈ C(M,ω). Then for x ∈ E,

C(t, ζ2I + A)x = C(t, A)x + ζt

∫ t

0

I1(ζ
√
t2 − s2)

√
t2 − s2

C(s,A)xds, (12.12)

where I1 is the Bessel function and

‖C(t, A + ζ2I)‖ ≤ M cosh(
√
ζ2 + ω2 t) for ζ ∈ C.

In [131,265,266], other more precise estimates of the expression C(t, A±ζ2I) are presented for Banach
and Hilbert spaces.

Proposition 12.5.4 ([255,288]). Let A ∈ C(M,ω), and let D(A) ⊆ D(G). If there exist ω′ ≥ 0 and
M ′ ≥ 1 such that ρ(A) contains the set {z : z > ω′} and the function G(z2I − A)−1 is infinitely many
times differentiable, and, moreover,

1

n!

∥∥∥∥(z − ω′)n+1
( d

dz

)n(
G(z2I −A)−1

)
x

∥∥∥∥ ≤ M ′‖x‖

for x ∈ E and any n ∈ N and z > ω′, then A + G generates a C0-cosine operator function.

Proposition 12.5.5 ([143]). If A,G ∈ C(M,ω), then the operator A + G (or its closure) may not gen-
erates a C0-cosine operator function in general, even in the case where C(·, A) and C(·, G) commute.
However, we always have A + B ∈ H(ω, π/2).

Proposition 12.5.6 ([21]). Let A,G ∈ C(M,ω), and let D1 := D(A)∩D(G) be dense in E. Then on D1,
the following “generalized” cosine function (in the sense of fulfillment of conditions (i)–(ii) of Definition
2.3.1 is defined:

C̃(t, A + G)x = C(t, A)x +
t2

2

∫ 1
0
j1(t

√
1 − s2, A)C(ts,G)xds,

where j1(t, A) :=
4

π

1∫
0

√
1 − s2C(ts,A)xds, x ∈ D1. If A + G generates a C0-cosine operator function

C(t, A + G), then C(t, A + G) = C̃(t, A + G), t ∈ R.
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Proposition 12.5.7 ([275]). Let A ∈ C(M,ω), and let the operator G ∈ C(E) be such that
(i) for the C0-sine operator valued function, R(S(t, A)) ⊆ D(G) for all t ∈ R;
(ii) the function GS(t, A) is strongly continuous in t ∈ R.
Then the operator A + G generates a C0-cosine operator function. Moreover,

C(t, A + G)x =
∞∑
k=0

Ĉk(t) and S(t, A + G)x =
∞∑
k=0

Ŝk(t), (12.13)

where Ĉ0(t) := C(t, A),

Ĉk(t) :=

∫ t

0
C(t− s,A)GŜk−1(s) ds

and Ŝ0(t) := S(t, A),

Ŝk(t) :=

∫ t

0
S(t− s,A)GŜk−1(s) ds

and series (12.13) converges absolutely in B(E).

Proposition 12.5.8 ([275]). Under the conditions of Proposition 12.5.7, we have the relation

(λI −A−G)−1 = (λI −A)−1
∞∑
k=0

(G(λI −A)−1)k.

Proposition 12.5.9 ([273]). Under the conditions of Proposition 12.5.7, if the C0-sine operator function
S(·, A) is compact, then the C0-sine operator function S(·, A + G) is also compact.

Proposition 12.5.10 ([269]). Let A1, A2 ∈ C(M,ω), and let D(A1) ⊆ D(A2). Then

C(t, A1)x− C(t, A2)x =

∫ t

0
S(t− s,A2)(A1 −A2)S(s,A1)xds

for all x ∈ D(A1).

Theorem 12.5.1 ([269,273]). Let A ∈ C(M,ω), and let G ∈ C(E) be such that
(i) D(A) ⊆ D(G);
(ii) there exists a continuous function K(t) having the property

‖GS(t, A)x‖ ≤ K(t)‖x‖ for all x ∈ D(A).

Then the operator A + G generates a C0-cosine operator function.

Proposition 12.5.11 ([273]). Let an operator A ∈ C(M,ω) satisfy Condition (F) with an operator G ∈
C(E), and, moreover, for a certain operator Q ∈ C(E), the condition D(G) ⊆ D(Q) holds. Then A + Q
generates a C0-cosine operator function.

Proposition 12.5.12 ([273]). In Proposition 12.5.11, let the condition of inclusion of domains be replaced
by the condition D(A) ⊆ D(Q). If the operator Q is G-bounded, then the operator A + Q generates a
C0-cosine operator function.

Proposition 12.5.13 ([262,270]). Let A ∈ C(M,ω), G ∈M(C(t, A)), G(λI−A)−1 ∈ B(E), and let |ε| <
K−1∞ . Then the operator A+εG generates a C0-cosine operator function, lim

ε→0
‖C(t, A+εG)−C(t, A)‖ = 0

uniformly on any compact set from R, and

C(t, A + εG) =
∞∑
k=0

εkCk(t),
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where C0(t) := C(t, A); Ck(t) :=
t∫
0

Ck−1(t − s)GS(s,A)xds, x ∈ D(A), Ck(t) is a continuous extension

of Ck(t) to the whole E and M is the class of perturbations in the sense of Miyadera.

Proposition 12.5.14 ([208]). Let C0-cosine operator functions C(t, A1) and C(t, A2) be such that
‖C(t, A1)‖ ≤ Meωt and ‖C(t, A2)‖ ≤ Neνt for t ∈ R and ‖(A1 −A2)x‖ ≤ a‖x‖ + b‖A1x‖ for x ∈ D(A1).
Then for z > ω, we have

‖
(
C(t, A1) − C(t, A2)

)
(z2I −A1)

−1‖ ≤


MN

2ν
Qt sinh(ωt),

MN

ω2 − ν2
Q
(

cosh(ωt) − cosh(νt)
)
,

where Q := (1 + M)b + (a+bω2)M
z2−ω2 .

Proposition 12.5.15 ([208]). Under the conditions of Proposition 12.5.14, if a, b → 0, then

s- lim
a,b→0

C(t, A2)x = C(t, A1)x for x ∈ D(A1).

Proposition 12.5.16 ([259]). Let K(t, A) be a w∗-continuous cosine operator function, and let B be a
w∗-w∗ continuous operator on E∗. Then A + B is the w∗-generator of a w∗-continuous cosine-function
K(t, A + B) and lim‖B‖→0 ‖K(t, A + B) −K(t, A)‖ = 0 uniformly on any compact set t ∈ [0, T ].

12.6. An Integral Operator on Lp([0, T ];E)

For C0-groups of operators and C0-cosine operator functions, we can formulate specific perturbation
theorems , which assume certain “hyperbolicity” conditions.

Let J ⊆ R be a certain interval. Denote by Σ(J ;E) the vector space of all linear combinations of
mappings of the form χjx, where x ∈ E and χj is the characteristic function of the interval T ⊆ J , i.e.,
Σ(J ;E) is the space of step functions.

Let {L(t)}∞t=−∞ be a strongly continuous family of bounded operators on E, and let A ∈ C(E).
Assume that the following hypotheses hold:

H1. For each x ∈ E and t ∈ R, the integral
∫ t
0 L(s)xds ∈ D(A) and the mapping t → A

t∫
0

L(s)xds

is continuous as a mapping from R into E;
H2. There exist a subset D� ⊆ D(A∗) and a constant M ≥ 1 such that
(a) for any φ� ∈ D�, the mapping t → L∗(t)A∗φ� is continuous as a mapping from R into E∗;
(b) for each x ∈ E, there exists φ� ∈ D� such that ‖φ�‖ ≤ M and ‖x‖ = 〈x, φ�〉 .

By H1, for any f(·) ∈ Σ(R;E), the mapping t → A
∫ t
0 L(t − s)f(s) ds is continuous as a mapping

from R into E, and we can define the operator K : Σ(R;E) → C(R;E) by the formula

(Kf)(t) := A

∫ t

0
L(t− s)f(s) ds, t ∈ R, f(·) ∈ Σ(J ;E).

By H2, for each g�(·) ∈ Σ(R;D�), we can analogously define K� : Σ(R;D�) → C(R;E∗) by the
formula

(K�g�)(s) :=

∫ ∞
s

L∗(t− s)A∗g�(t) dt, s ∈ R, g�(·) ∈ Σ(R;D�).

Let T > 0 be finite. Then the operators K and K� induce the operators

(KT f)(t) := A

∫ t

0
L(t− s)f(s) ds, t ∈ [0, T ], f(·) ∈ Σ(J ;E) (12.14)

and

(K�T g
�)(s) :=

∫ T

s

L∗(t− s)A∗g�(s) ds, s ∈ [0, T ]; g�(·) ∈ Σ(J ;D�).
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Let p, q ∈ R+, and let
1

p
+

1

q
= 1. For f(·) ∈ Lp(J ;E) and g∗(·) ∈ Lq(J ;E∗), we set

〈〈f, g〉〉 =

∫
J

〈f(s), g∗(s)〉 ds,

and by the Fubini theorem, we have

〈〈KT f, g
�〉〉 = 〈〈f,K�T g

�〉〉, f(·) ∈ Σ([0;T ];E), g�(·) ∈ Σ([0;T ];D�).

Now we note that if

|||KT |||p1,p2 := sup

{
‖KT f‖Lp2([0;T ];E) : f(·) ∈ Σ([0;T ];E), ‖f‖Lp1 ([0,T ];E) = 1

}
< ∞,

then by the density of Σ([0;T ];E) in Lp1([0, T ];E) and the closedness of the operator A, for any f(·) ∈
Lp1([0, T ];E), the element KT f(·) ∈ Lp2([0, T ];E) and is defined for almost all t ∈ [0, T ] by expression
(12.14). We call attention to that if p2 = ∞, then the range of KT , in fact, lies in C([0, T ];E), and
KT : Lp1([0;T ];E) → C([0;T ];E) is continuous. Analogous arguments lead to the continuity of the
mapping K�T : Lq2([0;T ];E�) → C([0;T ];E∗), where E� is the strong closure of D�. Moreover, using
H2 (b), we obtain

|||K�T |||q2,q1 ≤ |||KT |||p1,p2 ≤ M |||K�T |||q2,q1, (12.15)

where
1

p1
+

1

q1
= 1,

1

p2
+

1

q2
= 1, and

|||K�T |||q2,q1 := sup
{
||K�T g

�||Lq1 ([0;T ];E∗) : g� ∈ Σ([0;T ];D�), ‖g�‖Lq2 ([0;T ];E∗) = 1
}
.

12.7. Lifting Theorem for C0-Groups

Recall that for a generator of a C0-semigroup exp(·A), the domain D(A�) is a w∗-dense set in E∗,

and A� is a closed operator on E� = D(A�).
In this section, we consider the operator KT defined by the formula

(KT f)(t) := A

∫ t

0
exp((t− s)A)Bf(s) ds, t ∈ [0, T ], (12.16)

where B ∈ B(E).

Theorem 12.7.1 ([232]). Let A ∈ GR(M,ω), and let KT ∈ B
(
Lp1([0, T ];E), Lp2([0, T ];E)

)
for certain

p1, p2 ∈ R+ and T ∈ R+. Then KT ∈ B
(
Lp1([0, T ];E), C([0, T ];E)

)
and there exists a constant C > 0

such that

‖KT f‖C([0,τ ];E) ≤ C‖f‖Lp1([0,τ ];E) for any τ ∈ [0, T ]. (12.17)

Definition 12.7.1. We say that the operator KT for the C0-group exp(·A) satisfies Condition HG
if there exist constants C, τ > 0 and T > 0 such that for any x ∈ E, there exists a function hx(·) ∈
C([−τ, T ];E) having the property

(HG1) ‖hx(·)‖C([−τ,T ];E) ≤ C‖x‖E ;
(HG2) Bhx(t) = exp(tA)Bx, −τ ≤ t ≤ T − τ.

Condition HG hor C0-groups holds, e.g., in the following two cases:
(i) B commutes with exp(·A); in this case, hx(t) = exp(tA)x, −τ ≤ t ≤ T ;
(ii) B has a bounded inverse; in this case, hx(t) = B−1 exp(tA)Bx, t ∈ [−τ, T ].
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Theorem 12.7.2 ([232]). Let the conditions of Theorem 12.7.1 hold, and, additionally, let Condition

HG hold. Then KT ∈ B
(
L1([0, T ];E), C([0, T ];E)

)
and there exists a constants C > 0 such that

‖KT f‖C([0,τ ];E) ≤ C‖f‖L1([0,τ ];E) for any 0 ≤ τ ≤ T .

Corollary 12.7.1 ([232]). Let the conditions of Theorem 12.7.1 hold. Then there exist constants L,α > 0
such that SV (KT , T ) ≤ LeαTT 1/p1 , T > 0.

Corollary 12.7.2 ([232]). Let E = H be Hilbert, and let the conditions of Theorem 12.7.1 hold. Then
there exist constants L,α > 0 such that SV (KT , T ) ≤ LeαTT 1/2, T > 0.

12.8. Lifting Theorem for C0-Cosine Operator Functions

Let E be a Banach space, and let A : D(A) ⊂ E → E be a generator of a C0-cosine operator function
on E. Also, let us consider the adjoint family {C(·, A)∗}. It is well known that it is also a cosine-family
of linear bounded operators on the dual space, which, however, can be not strongly continuous. Recall
that the space E� is defined as

E� = {x∗ ∈ E∗ : s− lim
t→0

C(t, A)∗x∗ = x∗ },

where the limit is understood in the strong topology of the space E∗.
On the other hand, C0-cosine operator functions can be studied by using C0-groups. More pre-

cisely, introducing the Kysinski space E1, we can reduce the consideration to a C0-group of operators
{exp(tA)}+∞t=−∞ on E1 ×E defined as

exp(tA) =

(
C(t, A) S(t, A)
AS(t, A) C(t, A)

)
, t ∈ R. (12.18)

Its generator is A : D(A) ×E1 ⊂ E1 ×E → E1 ×E; it is given as A =

(
0 I
A 0

)
.

Let B ∈ B(E) be a linear continuous operator on E. It is easy to verify that the family L(t) :=
S(t, A)B, t ∈ R, satisfies all the conditions presented in Sec. 12.6 with respect to D� = D(A�).

In this section, we consider the continuity of the corresponding convolution operator

(KT f)(t) := A

∫ t

0
S(t− s,A)Bf(s) ds, t ∈ [0, T ] ⊂ R+, (12.19)

in Lp([0, T ];E) norms, p ∈ [1,+∞].
Note that in the case of the C0-cosine operator functions considered, one can show that

‖KT ‖B(Lp1 ([0,T ];E),L∞([0,T ];E)) grows exponentially in T . This property is stated in the lifting theorem
(Theorem 12.8.1).

Further, it is natural to try to find a new convolution operator KT constructed according to the
group U that reduces the study of KT to that of KT . Therefore, the results that are true for C0-groups
can be directly extended to C0-cosine operator functions. Consider the following operator bounded on
E1 ×E:

B =

(
0 0
0 B

)
and the corresponding convolution operator

(Kh)(t) = A

∫ t

0
U(t− s)Bh(s) ds, t ∈ R, (12.20)

where h = [g, f ]T ∈ Σ([0, T ], E1 ×E).
Also, for T > 0, we define the convolution operator GT : Σ([0, T ], E) → C([0, T ], E1) by the relation

(GT f)(t) =

∫ t

0
C(t− s,A)Bf(s) ds, f ∈ Σ([0, T ], E), 0 ≤ t ≤ T.
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Further, we have
(KTh)(t) = [(GT f)(t), (KT f)(t)]T , 0 ≤ t ≤ T,

for h = [g, f ]T ∈ Σ([0, T ], E1 ×E).

Lemma 12.8.1 ([232]). Let p1, p2 ∈ [1,+∞], and let T > 0.
(i) KT is continuous as a mapping from Lp1([0, T ], E1 ×E) into Lp2([0, T ], E1 ×E) iff GT is contin-

uous as a mapping from Lp1([0, T ];E) into Lp2([0, T ], E1), and KT is continuous from Lp1([0, T ];E) into
Lp2([0, T ];E).

(ii) Let T ∗ > T . If KT ∗ is continuous from Lp1([0, T ∗], E) into Lp2([0, T ∗], E) and if p2 = +∞, then
KT is continuous from Lp1([0, T ], E1 ×E) into Lp2([0, T ], E1 ×E).

Assertion (ii) of the lemma with T = T ∗ and 1 ≤ p2 < +∞ also holds. This result is a consequence
(see Corollary 12.8.2) of the main lifting theorem (Theorem 12.8.1).

Theorem 12.8.1 ([232]). Assume that there exist T0 and p1, p2 ∈ [1,+∞] such that ‖KT0‖ ∈
B(Lp1([0, T ];E), Lp2([0, T ];E)). Then there exist constants L > 0 and α > 0 such that

‖KT ‖B(Lp1 ([0,T ];E),C([0,T ];E)) ≤ LeαT , T > 0. (12.21)

Corollary 12.8.1 ([232]). Assume that the conditions of Theorem 12.8.1 hold. Then there exist L > 0
and α > 0 such that

SV(KT , T ) ≤ LeαTT 1/p1, T ∈ R.

Corollary 12.8.2 ([232]). Let p1, p2 ∈ [1,+∞], and let T > 0. Then ‖KT ‖B(Lp1 ([0,T ];E),Lp2([0,T ];E)) <
+∞ iff ‖KT ‖B(Lp1 ([0,T ];E),Lp2([0,T ];E)) < +∞.

Corollary 12.8.3 ([232]). Assume that E is a Hilbert space and that the conditions of Theorem 12.8.1
hold. Then there exist L > 0 and α > 0 such that

SV(KT , T ) ≤ LeαTT 1/2, T > 0.

In particular, setting p1 = p2 = +∞ in the obtained assertion, we obtain the following interesting
consequence.

Corollary 12.8.4 ([232]). Assume that E is Hilbert and that SV(KT , T0) < +∞ for a certain T0 > 0.
Then there exist L > 0 and α > 0 such that

SV(KT , T ) ≤ LeαTT 1/2, T ∈ R+.

In the same way as for C0-groups, under certain additional conditions, we can strengthen the assertion
of Theorem 12.8.1.

Definition 12.8.1. We say that the operator KT in (12.19) satisfies ConditionHC if there exist constants
C0 > 0 and T0 > 0 such that for any x ∈ E, there exists a function hx ∈ L∞([0, T ];E) having the properties

HC1 ‖hx‖L∞([0,T ];E) ≤ C‖x‖
and
HC2 Bhx(t) = C(t− T,A)Bx, 0 ≤ t ≤ T .

Note that at least in two cases, Condition HC holds; namely
(i) when B commutes with C(t, A); for t ∈ R, we can set hx(t) = C(t− T,A)x, 0 ≤ t ≤ T and
(ii) when B is invertible; we can set hx(t) = B−1C(t− T,A)Bx, 0 ≤ t ≤ T .

Theorem 12.8.2 ([232]). Assume that there exist T0 > 0 and p1, p2 ∈ [1,∞] such that

‖KT0‖B(Lp1 ([0,T ];E),Lp2([0,T ];E)) < ∞.

Also, assume that condition HC is fulfilled. Then there exist L > 0, α > 0 such that

‖KT ‖B(L1([0,T ];E),C([0,T ];E)) < LeαT .
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12.9. Perturbation of C0-Groups of Operators

In this section, we use lifting theorems for studying multiplicative perturbations. Let exp(·A) be a
C0-group of linear bounded operators on a Banach space E. Let B ∈ B(E) be a certain linear bounded
operator on E. Here we study the question whether the multiplicatively perturbed operator Am = A(I+B)
defined on the natural domain D(Am) = {x ∈ E : (I+B)x ∈ D(A)} is an infinitesimal operator of another
C0-group under a condition on operator KT . First, assume that Am is the infinitesimal operator of the
C0-group exp(·Am). It is easy to verify that for any x ∈ E, the following relation holds:

exp(tAm)x = exp(tA)x + A

∫ t

0
exp((t− s)A)B exp(sAm)xds, t ∈ [0, T ]. (12.22)

Consider the convolution operator KT : Σ([0, T ], E) → C([0, T ];E) defined in (12.16). Assume that there
exists T > 0 such that SV(KT , T ) = ‖KT ‖B(L∞([0,T ];E),L∞([0,T ];E)) < +∞. Then KT can be considered
as a bounded operator KT : C([0, T ];E) → C([0, T ];E). Relation (12.22) means that for any x ∈ E, the
mapping fx,T : [0, T ] → E defined by fx,T (t) = exp(tAm)x for t ∈ [0, T ] satisfies the condition

fx,T (t) = exp(tA)x + (KT fx,T )(t), t ∈ [0, T ].

The converse is also true. For a given x ∈ E, we study the solvability in C([0, T ];E) of the convolution
equation

f(t) = exp(tA)x + (KT f)(t), 0 ≤ t ≤ T, (12.23)

and then show that f(t) can be considered as exp(tAm)x. As in Sec. 12.1, this approach is divided into
two steps:

(Step 1) Prove that there exists T > 0 such that KT maps C([0, T ];E) into itself continuously and
(Step 2) prove that SV(KT , T ) = ‖KT ‖B(L∞([0,T ];E),L∞([0,T ];E)) < 1 for a certain sufficiently small

T > 0.
If (Step 1) and (Step 2) hold, then by the contraction mapping principle Eq. (12.23) is uniquely

solvable. Therefore, following Sec. 12.1, we obtain that the perturbed operator Am is the generator of a
C0-semigroup.

Theorem 12.9.1 ([232]). Assume that there exist T0 > 0, 1 ≤ p1 < +∞, and 1 ≤ p2 ≤ +∞ such that
KT ∈ B(Lp1([0, T ];E), Lp2([0, T ];E)). Then there exist L > 0 and α > 0 such that for any T > 0,

SV (KT , T ) ≤ LeαTT 1/p1 . (12.24)

Moreover, the operator Am generates a C0-group and

‖ exp(tA) − exp(tAm)‖ = O(t1/p1) as t → 0. (12.25)

Proof. Estimate (12.24) for t ∈ R+ was obtained in Corollary 12.7.1. This property implies that
assertions (Step 1) and (Step 2) hold. Therefore, as in Sec. 12.1, we obtain that Am generates a C0-
semigroup exp(tAm), t ∈ R+.

On the other hand, we fix T > 0 and set M = sup−T≤t≤T ‖ exp(tAm)‖. Idedentity (12.22), together
with (12.24), yields the following for 0 ≤ t ≤ T :

‖ exp(tAm) − exp(tA)‖ ≤ ‖Kt‖B(L∞([0,T ];E),L∞([0,T ];E)) ≤ CLeαT |T |1/p1 , (12.26)

from which we obtain (12.25) for t ∈ R.
It remains to show that Am generates a C0-group and (12.26) also holds for t < 0. Choose 0 < T0 ≤ T

so that M2LeαT0T
1/p1
0 ≤ 1/2. Take 0 ≤ t ≤ T0. Then

exp(tAm) =
((

exp(tAm) − exp(tA)
)

exp(−tA) + I
)

exp(tA).
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Further, by (12.26), for t > 0, and by the choice of T0, we also have∥∥( exp(tAm) − exp(tA)
)

exp(−tA)
∥∥ ≤ 1/2.

Therefore, the series expansion shows that the operator exp(·Am) is invertible and ‖ exp(tAm)−1‖ ≤ 2M .
In fact, this proves that Am generates a C0-group.

Finally, using the series expansion once again, we obtain 0 ≤ t ≤ T0,∥∥ exp(−tAm) − exp(−tA)
∥∥ ≤

+∞∑
j=1

∥∥( exp(tAm) − exp(tA)
)

exp(−tA)‖j

=
+∞∑
j=1

(
M2Leαtt1/p1

)j
≤ 2M2Leαtt1/p1 ,

which proves (12.26) also for t < 0.
For Hilbert spaces the value p1 = +∞ is also admissible. Indeed, using Corollary 12.7.2, we obtain

the following theorem.

Theorem 12.9.2 ([232]). Assume that E = H is Hilbert and there exist T0 > 0 and p1, p2 ∈ [1,+∞],
such that KT ∈ B(Lp1([0, T ];E), Lp2([0, T ];E)). Then there exist L > 0 and α > 0 such that

SV(KT , T ) ≤ LeαTT 1/2, T ∈ R. (12.27)

Moreover, the operator Am generates a C0-group and

‖ exp(tA) − exp(tAm)‖ = O(t1/2) as t → 0.

Finally, under Condition HG, we can apply Theorem 12.7.2, which leads to the following theorem,
which is true for Banach spaces.

Theorem 12.9.3 ([232]). Let Condition HG hold. Also, assume that there exist T0 > 0 and p1, p2 ∈
[1,+∞], such that ‖KT0‖B(Lp1 ([0,T0],E),Lp2([0,T0],E)) < +∞. Then Am = A(I + B) is a generator of a
C0-group, and we have the estimate

‖ exp(tA) − exp(tAm)‖ = O(t) as t → 0.

Moreover, if E is reflexive, then B assumes its values in the domain of A, AB is a bounded operator, and
Am = A + AB is a bounded perturbation of A.

12.10. Perturbations of C0-Cosine Operator Functions

Let C(·, A) be a C0-cosine family of linear bounded operators on a Banach space E. Taking a
linear bounded operator B on E, we pose the problem: whether the multiplicatively perturbed operator
Am = A(I + B), acting on the domain D(Am) = {x ∈ E : (I + B)x ∈ D(A)} is a generator of another
C0-cosine family or not. First, assume that Am is a generator of a C0-cosine family C(·, Am). We already
knew that

C(t, Am)x = C(t, A)x + A

∫ t

0
S(t− s,A)BC(s,Am)xds, t ∈ R, x ∈ E. (12.28)

Acting in the same way as in Sec. 12.9, for a fixed x ∈ E, we arrive at the convolution equation

f(t) = C(t, A)x + (KT f)(t), 0 ≤ t ≤ T, (12.29)

where KT is defined in (12.19) and f is sought for in C([0, T ];E). As was shown in Sec. 12.1, if
(i) there exists T > 0 such that KT continuously maps C([0, T ];E) onto itself and
(ii) SV(KT , T ) = ‖KT ‖B(L∞([0,T ];E),L∞([0,T ];E)) < 1 for a sufficiently small T > 0,

then by the contraction mapping principle, Eq. (12.29) is uniquely solvable and Am is a generator of a
C0-cosine family.
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Theorem 12.10.1 ([232]). Assume that there exist T0 > 0, 1 ≤ p1 < +∞, and 1 ≤ p2 ≤ +∞ such that
‖KT ‖B(Lp1 ([0,T ];E),Lp2([0,T ];E)) < ∞. Then there exist L > 0 and α > 0 such that for any T > 0, the
following inequality holds:

SV(KT , T ) ≤ LeαTT 1/p1 . (12.30)

Moreover, the operator Am generates a C0-cosine operator family, and

‖C(t, A) − C(t, Am)‖ = O(t1/p1) as t → 0. (12.31)

Using Corollary 12.8.3, we easily obtain the following theorem.

Theorem 12.10.2 ([232]). Assume that E = H is Hilbert and that there exist T0 > 0 and p1, p2 ∈
[1,+∞] such that ‖KT ‖B(Lp1 ([0,T ];E),Lp2([0,T ];E)) < +∞. Then there exist L > 0 and α > 0 such that

SV(KT , T ) ≤ LeαTT 1/2, T > 0. (12.32)

Moreover, the operator Am generates a C0-cosine operator family, and

‖C(t, A) −C(t, Am)‖ = O(t1/2) as t → 0.

Theorem 12.10.3 ([232]). Assume that Condition HC holds. Also, assume that there exist T0 > 0 and
p1, p2 ∈ [1,+∞] such that ‖KT0‖B(Lp1 ([0,T0];E),Lp2([0,T0];E)) < +∞. Then Am = A(I +B) is a generator of
a C0-cosine operator family, and the following estimate holds:

‖C(t, A) −C(t, Am)‖ = O(t) as t → 0.

Chapter 13

INHOMOGENEOUS EQUATIONS

In a Banach space E, let us consider the inhomogeneous Cauchy problem

u′(t) = Au(t) + f(t), t ∈ [0, T ], u(0) = u0, (13.1)

with the operator A generating a C0-semigroup. For f ≡ 0, the well-posed statement of such problems
are described in detail in Chapter 1 of [17]. Formally, as in the finite-dimensional analysis, problem (13.1)
has a solution of the form

u(t) = exp(tA)u0 +

∫ t

0
exp((t− s)A)f(s) ds, t ∈ [0, T ]. (13.2)

This is the so-called constant variation formula. The properties of the expression
∫ t
0 exp((t− s)A)f(s) ds

and the corresponding interpretations of solutions related to representation (13.2) are of interest.

13.1. General Results

It is known from the theory of partial differential equations that problems that are written in the
abstract form (13.1) are usually considered in the spaces of the types C([0, T ];E) or Lp([0, T ];E). In this
chapter, we restrict ourselves to these two statements.

So, for example, if f(·) ∈ C([0, T ];E), then for the C0-semigroup exp(·A), the expression exp((t −

s)A)f(s) is continuous in s ∈ [0, T ], and hence there exists
t∫
0

exp((t− s)A)f(s) ds.

On the other hand, if u(·) is a solution of problem (13.1) with f(·) ∈ C([0, T ];E), which belongs to

C([0, T ];E) ∩C1((0, T ];E), then
d

ds

(
exp((t− s)A)u(s)

)
= exp((t− s)A)f(s) and integrating over (0, t),

we obtain (13.2). The converse is not true in general, since the function u(·) given by expression (13.2)
can be not differentiable.

In the theory of abstract differential equation, the following theorem is well known
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Theorem 13.1.1 ([20,31]). Let A ∈ G(M,ω), u0 ∈ D(A), and let the function f(·) is such that either
(i) f(·) ∈ C1([0, T ];E);
or
(ii) f(·) ∈ C([0, T ];E) assumes its values in D(A) and, moreover, Af(·) ∈ C([0, T ];E).
Then problem (13.1) has a unique solution u(·) ∈ C1([0, T ];E) with the initial condition u0 that is

represented in the form (13.2).

In the case where f(·) satisfies the Hölder condition

‖f(t) − f(s)‖ ≤ M |t− s|γ for 0 ≤ s, t ≤ T, (13.3)

with certain constants M > 0 and 0 < γ ≤ 1, the following theorem holds.

Theorem 13.1.2 ([20,31]). Let A ∈ H(ω, θ), and let f(·) satisfy the Hölder condition (13.3). Then the
function u(·) from (13.2) belongs to C([0, T ];E)∩C1((0, T ];E) and is a solution of problem (13.1) for any
u0 ∈ E. Moreover, u(·) ∈ C1([0, T ];E) if u0 ∈ D(A).

The Cauchy–Kovalevskaya theorem can also be written in the abstract form. Let {Eθ : 0 ≤ θ ≤ 1}
be Banach spaces having the properties Eθ2 ⊆ Eθ1 if θ1 < θ2 and

‖x‖Eθ1 ≤ ‖x‖Eθ2 for any x ∈ Eθ2.

Let Lα be the set of linear operators Q ∈ L(Eθ2 , Eθ1) for 0 ≤ θ1 < θ2 < 1 such that

‖Qx‖Eθ1 ≤
α

θ2 − θ1
‖x‖Eθ2 for any x ∈ Eθ2 .

A function A(t) : [0, T ] → Lα is said to be continuous if for any ε > 0, t0 ∈ [0, T ], and θ > θ′, there
exists δ > 0 such that for |t− t0| < δ, we have

‖(A(t) −A(t0))x‖Eθ′ ≤ ε‖x‖Eθ for any x ∈ Eθ.

We call attention to the fact that the space Lα is a Banach space with the norm

‖Q‖Lα = sup
0≤θ′<θ≤1

sup
x

(θ − θ′)‖Qx‖Eθ′ ‖x‖
−1
Eθ
.

Theorem 13.1.3 ([29]). Let u0 ∈ E1, f(·) ∈ C([−T, T ];E1), and let A(·) ∈ C([−T, T ];Lα). Then
1. For each θ ∈ [0, 1), there exists a function u(·) defined for 0 ≤ t < Ts := min(T, (1 − θ)(αe)−1)

and assuming its values in Eθ. The function u(·) is continuously differentiable, satisfies the equation

u′(t) = A(t)u(t) + f(t) for 0 ≤ t < Ts (13.4)

and the condition u(0) = u0.
2. If for certain θ ∈ (0, 1] and 0 < T ′ ≤ T , on the set [0, T ′], we have two functions with values in Eθ

that are continuously differentiable, satisfy (13.4), and coincide for t = 0, then these functions coincide
on [0, T ′].

For a second-order equation, in a formula of the form (13.2), instead of exp(·A) we have C(·, A) and
S(·, A). However, often, there are no technical distinctions in studying these problems, and, as a rule, we
restrict ourselves to proofs only for the case of second-order equations.

13.2. Inhomogeneous Equations in C([0, T ];E)

In a Banach space E, let us consider problem (13.1) with the operator A generating a C0-semigroup.

Definition 13.2.1. A classical solution of problem (13.1) is a function u(·) such that u(·) ∈ C1([0, T ];E),
u(t) ∈ D(A) for all t ∈ [0, T ], and relations (13.1) hold.

Proposition 13.2.1 ([235]). Let f(·) ∈ L1([0, T ];E). Then for any u0 ∈ E, problem (13.1) has not more
than one classical solution. If it has a classical solution, then this solution has the form (13.2).
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Definition 13.2.2. A weakened solution of problem (13.1) is a function u(·) ∈ C([0, T ];E) such that
u′(·) ∈ C((0, T ];E) and Eq. (13.1) holds on (0, T ].

Theorem 13.2.1 ([47]). Let problem (13.1) with f(·) ∈ C([0, T ];E) and u0 ∈ D(A) have a weakened
solution u(·), and let ρ(A) �= ∅. Then u(·) is given in the form (13.2).

As was noted, the function u(·) given in the form (13.2) is not a classical, not a weakened solution
in general, since it can be not differentiable.

Definition 13.2.3. A function u(·) ∈ C([0, T ];E) given by (13.2) is called a mild solution of problem
(13.1).

Theorem 13.2.2 ([235]). Let A ∈ G(M,−ω) with ω > 0, and let the function f(·) : [0,∞) → E be
bounded and measurable on [0,∞). If s- lim

t→∞
f(t) = f∞, then a mild solution u(·) defined by (13.2) has

the following behavior:
s- lim

t→∞
u(t) = −A−1f∞.

In a Banach space E, let us consider the Cauchy problem

u′′(t) = Au(t) + f(t), t ∈ [0, T ], u(0) = u0, u′(0) = u1, (13.5)

with the operator A generating a C0-cosine operator function.

Definition 13.2.4. A function u(·) is called a classical solution of problem (13.5) if u(·) is twice contin-
uously differentiable, u(t) ∈ D(A) for all t ∈ [0, T ], and u(·) satisfies relations (13.5).

If f(·) ∈ C([0, T ];E) and u(·) is a classical solution of (13.5), then, considering the expression
d

ds

(
C(t− s,A)u(s) + S(t− s,A)u′(s)

)
= S(t− s,A)f(s) and integrating it in 0 ≤ s < t, we obtain

u(t) = C(t, A)u0 + S(t, A)u1 +

∫ t

0
S(t− s,A)f(s) ds, t ∈ [0, T ], (13.6)

As in the case of C0-semigroups of operators, the function u(·) given by (13.6) is not a classical solution
in general, since it can be not twice continuously differentiable.

Proposition 13.2.2 ([134]). Let A ∈ C(M,ω), and let either
(i) f(·), Af(·) ∈ C([0, T );E) and f(t) ∈ D(A) for t ∈ [0, T ]
or
(ii) f(·) ∈ C1([0, T ];E).
Then the function u(·) from (13.6) with u0 ∈ D(A) and u1 ∈ E1 is a classical solution of problem

(13.5) on [0, T ].

Definition 13.2.5. The function u(·) ∈ C([0, T );E) given by expression (13.6) is called a mild solution
of problem (13.5).

Theorem 13.2.3 ([47]). Let the operator B =
√
A in problem (13.5) have a bounded inverse B−1 ∈ B(E)

and be a generator of a C0-group, and let the function f(·) have one of the following properties:
(i) f(·) ∈ C1([0, T );E);
(ii) Bf(·) ∈ C([0, T );E).
Then for any u0 ∈ D(A) and u1 ∈ D(B), there exists a unique classical solution of problem (13.5)

given by formula (13.6) in the form

u(t) =
1

2

(
exp(tB) + exp(−tB)

)
u0 +

1

2

(
exp(tB) − exp(−tB)

)
B−1u1

+
1

2

∫ t

0

(
exp((t− s)B) + exp(−(t− s)B)

)
B−1f(s) ds, t ∈ [0, T ]. (13.7)
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Theorem 13.2.4 ([105]). Let A ∈ C(M,ω). The Cauchy problem

u′′(t) = Au(t) + f(t), u(0) = x, u′(0) = y, (13.8)

has a unique 2π-periodic mild solution of class C1 for any 2π-periodic function f(·) ∈ L2loc(R;E) iff

1 ∈ ρ
(
C(2π,A)

)
.

Note that the condition 1 ∈ ρ(C(π,A)) is equivalent to that {−4π2k2/T 2}k∈Z ⊆ ρ(A) and
supk∈Z ‖k(4π2k2/T 2 + A)−1‖ < ∞.

13.3. Coercivity in the Case of Classical Solutions

Since the existence of a classical solution of problem (13.1) presupposes the continuity of the derivative
of the function u(·) on [0, T ], then by representation (13.2), it is natural to consider the differentiability
of the expression (exp(·A) ∗ f)(t) in the variable t ∈ R+.

Definition 13.3.1. We say that a C0-semigroup exp(·A) has the property of maximal regularity (MR-
property in brief) if (

exp(·A) ∗ f
)

(·) ∈ C1([0, T ];E)

(or, which is equivalent,
(

exp(·A) ∗ f
)

(·) ∈ C

(
[0, T ];D(A)

)
for all f(·) ∈ C([0, T ];E)).

Proposition 13.3.1 ([123]). The convolution (exp(·A) ∗ f)(·) ∈ C1([0, T ];E) iff (exp(·A) ∗ f)(t) ∈ D(A)
for all t ∈ [0, T ] and (exp(·A) ∗ f) ∈ C([0, T ];D(A)).

Proposition 13.3.2 ([123]). The Cauchy problem (13.1) has a classical solution for any f ∈ C([0, T ];E)
iff A generates a C0-semigroup with the MR-property.

Proposition 13.3.3 ([271]). An operator A generates a C0-semigroup with the MR-property iff
SV (exp(·A), t) is bounded on [0, T ].

Theorem 13.3.1 ([88,123]). If a C0-semigroup exp(·A) has the MR-property, then either A is bounded
or the space E contains a closed subspace isomorphic c0.

As was shown in [123], there exist unbounded operators on E = c0 that generate C0-semigroups with
the MR-property.

Since an operator A generating a C0-semigroup is closed, by the closed graph theorem, in the case
of a C0-semigroup with the MR-property, the operator A(exp(·A) ∗ f) defined on the whole C([0, T ];E)
is continuous as an operator from C([0, T ];E) into C([0, T ];E). This means that the following inequality
holds:

‖A(exp(·A) ∗ f)‖C([0,T ];E) ≤ C‖f‖C([0,T ];E)

with a certain constant C independent of f(·). Generalizing the clearness of the previous inequality for
formulating the MR-property in the space C([0, T ];E) to the description of well-posedness of the Cauchy
problem for an inhomogeneous equation in spaces of the types Cα, hα, and so on, we arrive at the following
definition.

Definition 13.3.2. Let F be a Banach space being a subspace of the initial space E, Υ([0, T ];E) be the
Banach space of functions with values in E. Problem (13.1) is said to be coercively solvable in the pair of
spaces (F,Υ([0, T ];E)) (i.e., the solution u(·) has the maximal regularity property) if for any u0 ∈ F and
for any right-hand side f(·) ∈ Υ([0, T ];E), there exists a classical solution u(·) of the Cauchy problem
(13.1), and for this solution, we have the coercive inequality

‖u′(·)‖Υ([0,T ];E) + ‖Au(·)‖Υ([0,T ];E) ≤ M(‖f(·)‖Υ([0,T ];E) + ‖u0‖F ) (13.9)
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The formulation of this definition is very convenient. So, for example, Definition 13.3.2 for u(t) =
t exp(tA)u0 and f(t) = exp(tA)u0 and Proposition 13.3.3 trivially imply the following assertion.

Proposition 13.3.4 ([271]). Let A be a generator of a C0-semigroup, and let SV(exp(·A), t) < ∞. Then
the semigroup exp(·A) is analytic.

However, the analyticity of the C0-semigroup exp(·A) is not sufficient for the coercive solvability
of problem (13.1) in C([0, T ];E) (see [72]). Therefore, taking into account Theorem 13.3.1, we see that
the study of coercivity in the space C([0, T ];E) is not interesting. However, one can prove the following
theorem.

Theorem 13.3.2 ([219]). Let −∞ < a < b < ∞, 1 ≤ p, q ≤ ∞, σ ≥ 0, and let A ∈ H(θ, β). Then for any
f ∈ Bσ

p,q((a, b);E) with σ > 1/p or σ = 1/p and q = 1, we have exp(·A)∗f ∈ C1((a, b);E)∩C1((a, b);D(A))
and (13.1) holds for any t ∈ (a, b) for the function u(·) = exp(·A) ∗ f .

In fact, under the condition of the previous theorem, we can prove that for any f ∈ Bσ
p,q((a, b);E) ∩

L1((a, b);E), it follows that exp(·A) ∗ f ∈ Bσ+1
p,q ((a, b);E), where a < a1 < b, and there exists a constant

c > 0 with the property

‖ exp(·A) ∗ f‖Bσ+1p,q ((a,b);E)
≤ c(‖f‖Bσp,q((a,b);E) + ‖f‖L1((a,b);E)).

However, such estimates are not coercive.

Proposition 13.3.5 ([71]). Let A ∈ H(ω, θ), i.e., A generates a certain analytic C0-semigroup, F =
D(A), and Υ([0, T ];E)) is the Hölder space of functions Cα

0 ([0, T ];E) for which the following norm is
finite:

‖f(·)‖Cα0 ([0,T ];E) = sup
0≤t≤T

‖f(t)‖E + sup
0≤t,τ,t+τ≤T

‖f(t + τ) − f(t)‖E
τα

tα.

Then the Cauchy problem (13.1) is coercively solvable in the pair of spaces (F,Cα
0 ([0, T ];E)).

Theorem 13.3.3 ([3]). Let v′ = f(0) − Au(0) ∈ Eα−γ, f ∈ Cβ,γ
0 ([0, 1];Eα−γ), A ∈ H(ω, θ) for 0 ≤ γ ≤

β ≤ α, 0 < α < 1. Then there exists a unique solution of problem (13.1), Au, u′ ∈ Cβ,γ
0 ([0, 1];Eα−γ),

u′ ∈ C([0, 1];Eα−γ), and

‖u′‖
C
β,γ
0 (Eα−γ)

+ ‖Au‖
C
β,γ
0 (Eα−γ)

+ ‖u′‖C([0,1];Eα−γ) ≤ c

(
‖v′0‖α−γ +

1

α(1 − α)
‖f‖

C
β,γ
0 ([0,1];Eα−γ)

)
,

where Cβ,γ
0 has the norm

max
t

‖f‖E + max
0<t,t+τ≤T

‖f(t + τ) − f(t)‖E
τβ

(t + τ)γ.

Remark 13.3.1 ([68]). In the case where E = lp, the operator

A(xk)∞k=1 = (ik xk)∞k=1, (i =
√
−1),

generates a strongly continuous C0-semigroup (but not an analytic one!). For the right-hand side f(t) =(
k−(1−1/p)eikt

)∞
k=1

satisfying the Hölder condition with any exponent ε ∈ (0, 1), the function

φ(t) =

∫ t

0
exp((t− s)A)f(s) ds

does not belong D(A) for any t.
This example also shows that in the case where the operator A generates a C0-semigroup only, the

Hölder property of the right-hand side is not sufficient for the existence of a classical solution.

Denote (S(·, A) ∗ f)(t) :=
∫ t
0 S(t− s,A)f(s) ds, t ∈ [0, T ].
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Definition 13.3.3. We say that a C0-cosine operator function C(·, A) has the maximal regularity (MR-
property) if S(·, A) ∗ f ∈ C2([0, T ];E) (or, which is equivalent, C(·, A) ∗ f ∈ C([0, T ];D(A)) for all
f(·) ∈ C([0, T ];E).

Proposition 13.3.6 ([99]). Let x, y ∈ D(A). Then the following assertions are equivalent:
(i) problem (13.5) has a classical solution for a given f(·);
(ii) S(·, A) ∗ f ∈ C2([0, T ];E);
(iii) (S(·, A) ∗ f)(t) ∈ D(A) for 0 ≤ t ≤ T , and A(S(·, A) ∗ f)(t) is continuous in t ∈ [0, T ], i.e.,

(S(·, A) ∗ f) ∈ C([0, T ],D(A)).

Proof. (i) =⇒ (ii). We know that if u(·) is a solution of (13.5), then u(·) is twice continuously differentiable
and u(t) = C(t, A)x+S(t, A)y+ (S(·, A)∗f)(t). therefore, we have (S(·, A)∗f)′′(t) = u′′(t)−C ′′(t, A)x−
S′′(t, A)y = u′′(t) −C(t, A)Ax− S(t, A)Ay ∈ C([0, T ];E), i.e., S(·, A) ∗ f ∈ C2([0, T ];E).

(ii) =⇒ (iii). Since

2

h2
(C(h,A) − I)(S(·, A) ∗ f)(t) ==

1

h2
((S(·, A) ∗ f)(t + h) − 2(S(·, A) ∗ f)(t) + (S(·, A) ∗ f)(t− h))

+
1

h2

(
−

∫ t+h

t

S(t− s + h,A)f(s) ds +

∫ t

t−h
S(t− s− h,A)f(s)ds

)
=

=
1

h2

(
(S(·, A) ∗ f)(t + h) − 2(S(·, A) ∗ f)(t) + (S(·, A) ∗ f)(t− h)

)
+

1

h2

(
−

∫ t+h

t

S(t− s + h,A)f(s)ds +

∫ t

t−h
S(t− s− h,A)f(s) ds

)
,

(13.10)

we have

lim
h→0+

2

h2
(C(t, A) − I)(S(·, A) ∗ f)(t) = (S(·, A) ∗ f)′′(t) − f(t),

i.e., (S(·, A) ∗ f)(t) ∈ D(A) and A(S(·, A) ∗ f)(t) = (S(·, A) ∗ f)′′(t) − f(t). Therefore, A(S(·, A) ∗ f)(·) ∈
C([0, T ];E).

(iii) =⇒ (i). By (13.10),

1

h2

(
(S(·, A) ∗ f)(t + h) − 2(S(·, A) ∗ f)(t) + (S(·, A) ∗ f)(t− h)

)
=

2

h2

(
C(h,A) − I

)
(S(·, A) ∗ f)(t)

−
1

h2

(
−

∫ t+h

t

S(t− s + h,A)f(s)ds +

∫ t

t−h
S(t− s− h,A)f(s)ds

)
.

Then (c) implies (S(·, A)∗f)′′ = A(S(·, A)∗f)+f ∈ C([0, T ];E). Therefore, S(·, A)∗f is a solution of the
Cauchy problem (13.5) for a given f(·) and zero initial data, and u(t) = C(t, A)x+S(t, A)y+(S∗f)(t), t ∈
R is a solution of the Cauchy problem (13.5) for a given f(·) for each pair x, y ∈ D(A).

Theorem 13.3.4 ([99]). For a cosine operator function C(·, A), the following conditions are equivalent:
(i) the generator A is bounded;
(ii) ‖C(t, A) − I‖ = O(t2) (t → 0+);
(iii) V ar(C(·, A), t) = O(t2) (t → 0+);
(iv) V ar(C(·, A), t) = o(1) (t → 0+);
(v) SV (C(·, A), t) = O(t2) (t → 0+);
(vi) SV (C(·, A), t) = o(1) (t → 0+);
(vii) SV (C(·, A), t) < ∞ for some t > 0, i.e., C(·, A) is locally of bounded semivariation;
(viii) R(S(t, A)) ⊆ D(A) for t ∈ (−∞,∞), and ‖AS(t, A)‖ is bounded on [a, b] for some 0 < a < b;

(ix) R(S(t, A)) ⊆ D(A) for t ∈ (−∞,∞) and lim sup
t→0+

‖tAS(t, A)‖ <
2

e
.
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Definition 13.3.4. Let F be a Banach space being a subspace of the initial space E, and let Υ([0, T ];E)
be the Banach space of functions with values in E. Problem (13.5) is said to be coercively solvable in the
pair of spaces (F,Υ([0, T ];E)) (in other words, the solution has u(·) the maximal regularity property) if
for any right-hand side f(·) ∈ Υ([0, T ];E), there exists a classical solution u(·) of the Cauchy problem
(13.5), for each t, the value of the solution u(t) belong to F , and the following coercive inequality holds
for it:

‖u′′(·)‖Υ([0,T ];E)‖ + ‖Au(·)‖Υ([0,T ];E) ≤ M
(
‖f(·)‖Υ([0,T ];E) + ‖u0‖F + ‖u1‖F

)
.

Theorem 13.3.5 ([99]). Let problem (13.5) be coercively solvable in the pair (D(A),C([0, T ];E)). Then
A ∈ B(E).

This result can also be reformulated as follows:

Theorem 13.3.6 ([99]). The following statements are equivalent:
(i) for all x, y ∈ D(A) and f ∈ C([0, r];E), problem (13.5) has a classical solution;
(ii) the operator A generates a C0-cosine operator function that satisfies the MR-property;
(iii) the operator A generates a C0-cosine operator function that is of bounded semivariation on [0, r];
(iv) A is a bounded linear operator on E.

13.4. Coercivity in Lp([0, T ];E)

Let 1 ≤ p ≤ ∞. Then [91] u(·) ∈ W 1,p([0, T ];E) iff u(·) is absolutely continuous and u(·), u′(·) ∈
Lp([0, T ];E).

Definition 13.4.1. A function u(·) is said to be absolutely continuous if there exists a function v(·) ∈
L1([0, T ];E) such that

u(t) = u(τ) +

∫ t

τ

v(ξ) dξ for all τ, t ∈ [0, T ].

An absolutely continuous function u(·) is continuous and differentiable almost everywhere on [0, T ],
and, moreover, u′(·) = v(·).

Definition 13.4.2. A classical solution of problem (13.1) in the space Lp([0, T ];E) is an absolutely
continuous function u(·) such that the function u′(·), Au(·) ∈ Lp([0, T ];E) satisfies Eq. (13.1) almost
everywhere on [0, T ] and u(0) = u0.

Definition 13.4.3. Problem (13.1) is said to be well-posed in Lp([0, T ];E) if for any f(·) ∈ Lp([0, T ];E),
there exists a unique classical solution u(·) in Lp([0, T ];E) continuously depending on u0 and f(·).

Definition 13.4.4. Problem (13.1) is said to be coercively solvable in Lp([0, T ];E) if for any f(·) ∈
Lp([0, T ];E) and u0 ∈ F , there exists a unique classical solution of problem (13.1) in Lp([0, T ];E) and

‖u′(·)‖Lp([0,T ];E) + ‖Au(·)‖Lp([0,T ];E) ≤ M(p)(‖f(·)‖Lp([0,T ];E) + ‖u0‖F ). (13.11)

Recall that if a certain property holds locally, then we write Lp
loc instead of Lp.

Definition 13.4.5. A function u(·) is called a W
1,p
loc -solution of the Cauchy problem (13.1) if u(·) ∈

W 1,p
loc ([0, T ];E) ∩ Lp([0, T ];D(A)) and (13.1) is satisfied.

Proposition 13.4.1 ([77]). Let 1 ≤ p ≤ ∞, A ∈ H(θ, ω), and let u(·) is a W 1,p
loc -solution of the Cauchy

problem (13.1). Then we have representation (13.2) for this solution.

Proposition 13.4.2 ([72]). The coercive solvability of problem (13.1) in Lp([0, T ];E) and the compact-
ness of the resolvent (λI −A)−1 imply the analyticity of the C0-semigroup exp(·A).
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To understand which space F should be in Definition 13.4.3, we consider the function A exp(tA)u0.
Obviously, F is the space with the norm

‖u0‖F =

(∫ T

0
‖A exp(tA)u0‖pE dt

)1/p
+ ‖u0‖E . (13.12)

Such a space F is a particular case of the spaces Eθ,p, 0 < θ < 1, 1 ≤ p ≤ ∞, with the norm

‖u0‖Eθ,p = ‖u0‖E + (

∫ T

0
‖t1−θA exp(tA)u0‖pE

dt

t
)1/p,

‖u0‖Eθ,∞ = sup
τ>0

τ1−θ‖A exp(τA)u0‖E .

We denote it by E1− 1
p

= E1− 1
p
,p.

Theorem 13.4.1 ([82]). For any function f(·) ∈ Lp([0, T ];E) and any u0 ∈ E1− 1
p
, formula (13.2) defines

an E1− 1
p
-valued function u(·) on [0, T ] and

max
0≤t≤T

‖u(t)‖E
1− 1p

≤ M
(
‖u0‖E

1− 1p
+

p2

p− 1
‖f‖Lp([0,T ];E)

)
.

Theorem 13.4.2 ([82]). Let problem (13.1) be coercively solvable in the space Lp0([0, T ];E) for a certain
1 < p0 < ∞ with M(p0) = M . Then it is coercively solvable for any 1 < p < ∞, and estimate (13.11)

holds with M(p) = M
p2

p− 1
.

Theorem 13.4.3. If the space E = H is Hilbert and A ∈ H(ω, θ), then problem (13.1) is coercively
solvable in L2([0, T ];H).

Theorem 13.4.4 ([82]). Under the conditions of Theorem 13.4.2, for any f(·) ∈ Lp([0, T ];E) and u0 ∈
E1− 1

p
, problem (13.1) has a unique solution u(·) in Lp([0, T ];E) such that the coercive inequality (13.11)

holds in the form

‖u′‖Lp([0,T ];E) + ‖Au‖Lp([0,T ];E) + max
0≤t≤T

‖u(t)‖E
1− 1p

≤ M
p2

p− 1

(
‖f‖Lp([0,T ];E) + ‖u0‖E

1− 1p

)
.

Theorem 13.4.5 ([82]). Let f(·) ∈ Lq([0, T ];Eα,q), 0 < α < 1, 1 ≤ q ≤ ∞, and let A ∈ H(θ, ω).
Then there exists a unique absolutely continuous solution u(·) of problem (13.1) with u0 = 0 such that
Au(·), u′(·) ∈ Lq([0, T ];Eα,q), and

‖u′‖Lq([0,T ];Eα,q) + ‖Au‖Lq([0,T ];Eα,q) ≤
M

α(1 − α)
‖f‖Lq([0,T ];Eα,q),

and, moreover, the constant M is independent of f, α, and q.

Theorem 13.4.6 ([82]). Let A ∈ H(ω, θ), and let 1 < p, q < ∞, or p = q = ∞. Then problem (13.1)
admits an absolutely continuous solution u(·) such that u′, Au ∈ Lp([0, T ];Eα,q), and u(·) is a continuous
E1+α− 1

p
,q-valued function iff f(·) ∈ Lp([0, T ];Eα,p) and u0 ∈ E1+α− 1

p
,q. This solution u(·) satisfies the

inequality

‖u′(·)‖Lp([0,T ];Eα,q) + ‖Au(·)‖Lp([0,T ];Eα,q) + max
0≤t≤T

‖u(t)‖E
1+α− 1p ,q

≤ M
(
‖u0‖E

1+α− 1p ,q
+

M(p, q)

α(1 − α)
‖f‖Lp([0,T ];Eα,q)

)
,

where M(p, q) =
M(q)p2

p− 1
if p �= q and M(p, p) = 1.
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Theorem 13.4.7 ([82]). Let p = q = 1 or p = q = ∞. Then problem (13.1) has an absolutely continuous
solution u(·) such that u′(·), Au(·) ∈ Lp([0, T ];Eα,p) iff f(·) ∈ Lp([0, T ];Eα,q)) and u0 ∈ E1+α− 1

p
,.

This solution satisfies the inequality

‖u(·)‖Lp([0,T ];Eα,p) + ‖Au(·)‖Lp([0,T ];Eα,p) ≤ M

(
‖u0‖1+α− 1

p
,p +

1

α(1 − α)
‖f‖Lp([0,T ];Eα,p)

)
.

Proposition 13.4.3 ([82]). Let 1 < p < ∞, f(·) ∈ Lp([0, T ];Eα,p), and let u0 ∈ E1+α− 1
p
,∞. Then u(·)

from formula (13.2) satisfies the estimate

max
0≤t≤T

‖u(t)‖E
1+α− 1p ,∞

≤ M
(
‖u0‖E

1+α− 1p ,∞
+

p2

p− 1
‖f‖Lp([0,T ];Eα,∞)

)
.

We set |Ω̃| = µ(Ω̃) for a µ-measurable set Ω̃ ∈ Ω.

Definition 13.4.6. If (exp(tA)f)(x) =
∫
Ω

k(t, x, y)f(y) dy, t ∈ R, then we say that k satisfies the Poisson

estimate of order m ∈ N if |k(t, x, y)| ≤ P (t, x, y) for almost all x, y ∈ Ω, where

P (t, x, y) := |B(x, t1/m)|−1p

(
d(x, y)m

t

)
and p(·) is a bounded, continuous, and strongly positive function satisfying the condition

lim
r→∞

rn+δp(rm) = 0

for a certain δ > 0 and |B(x, ρ)| := {y ∈ Ω : d(x, y) < ρ}.

Theorem 13.4.8 ([163]). Let 1 < p, q < ∞, and let (Ω, µ, d) be a topological space satisfying the following
conditions:

(i) |B(x, 2ρ)| ≤ C|B(x, ρ)|, where B(x, ρ) is the ball of radius ρ centered at a point x;
(ii) ess sup

x∈Ω
|B(x, ρ)| ≤ C ess inf

x∈Ω
|B(x, ρ)|;

(iii) the operator A generates an analytic C0-semigroup on L2(Ω) with ω(A) < 0.
Let a semigroup exp(·A) be represented by a kernel satisfying the Poisson estimate of order m ∈

N. Then A ∈ MR(p,Lq(Ω)), i.e., for each f ∈ Lp(R+;Lq(Ω)), there exists a unique solution u ∈
W 1,p(R+;Lq(Ω))∩Lp(R+;D(Aq)) of problem (13.1) with u0 = 0 in the sense of Lp(R+;Lq(Ω)). Moreover,∫ ∞

0
‖u(t)‖p

Lq(Ω) dt +

∫ ∞
0

‖u′(t)‖p
Lq(Ω) dt +

∫ ∞
0

‖Au(t)‖p
Lq(Ω) dt ≤ C

∫ ∞
0

‖f(t)‖p
Lq(Ω) dt

for any f(·) ∈ Lp(R+;Lq(Ω)).

Definition 13.4.7. A positive operator A ∈ C(E) is called an operator of bounded imaginary powers if
there exist ε > 0 and M ≥ 1 such that Ait ∈ B(E) and ‖Ait‖ ≤ M for −ε ≤ t ≤ ε.

Proposition 13.4.4 ([77]). Let A be positive and A be an operator of bounded imaginary powers. Then
there exist M ≥ 1 and θ ≥ 0 such that {Ait}t∈R is a C0-group of operators on E with the generator i logA
and ‖Ait‖ ≤ Meθ|t|, t ∈ R.

Note that if E = H is Hilbert and A = A∗ ≥ αI > 0, then A is an operator of bounded imaginary
powers.

Definition 13.4.8. Let S(R;E) be the Schwartz space of smooth rapidly decreasing E-valued functions.
For u(·) ∈ S(R;E), define the Hilbert transform

(Hu)(t) :=
1

π
PV

(
1

t

)
∗ u =

1

π
p.v.

∫ ∞
−∞

u(τ)

t− τ
dτ, t ∈ R.
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For an arbitrary Banach space E, the Hilbert transform can be not a bounded operator on Lp(R;E),
even for a certain p ∈ (1,∞).

Definition 13.4.9. A space E is called a UMD-space if the Hilbert transform is a bounded operator on
Lp(R;E) for a certain p ∈ (1,∞).

Proposition 13.4.5 ([77]). A Hilbert space H, any Banach space isomorphic to a UMD-space, any in-
terpolation space (X,Y )θ,p and [X,Y ]θ,p constructed via an interpolation pair of UMD-spaces, and any
finite-dimensional space are UMD-spaces.

Proposition 13.4.6 ([77]). Let E be a UMD-space. Then the Hilbert transform is a bounded operator
on Lp(R, E) for any p ∈ (1,∞).

Proposition 13.4.7 ([77]). Let E be a UMD-space, and let an operator A ∈ H(ω, θ) be such that
‖(−A)it‖ ≤ Meφ|t|, t ∈ R. Then problem (13.1) is coercively solvable in Lp([0, T ];E) with F =
(E,D(A))1− 1

p
,p.

In connection with Proposition 13.4.7, the following assertion is of interest.

Proposition 13.4.8 ([193]). Let A ∈ H(0, β) on a Hilbert space E = H. The following conditions are
equivalent:

(i) there exist C > 0 and ω such that ‖(−A)it‖ ≤ Ceωt, t ∈ R;
(ii) there exists an operator Q ∈ B(H) such that Q−1 ∈ B(H) and ‖Q−1 exp(tA)Q‖ ≤ 1, t ∈ R+.

It is clear that the study coercivity of problems (13.1) is in fact that of the convolution operator

A
t∫
0

exp((t − s)A)f(s) ds on the space Lp([0, T ];E). For such an operator, it is natural to apply the

Mikhlin theorem on Foirier multipliers in order to prove its continuity on the Lp(R;E) space. Recently,
this approach was realized in [172,292,293].

The Poisson semigroup on L1(R) and on Lp(R;E) is not coercively well posed on the Lp(R, E) space
if E is not an UMD-space (see [189]). Hence the assumptions on E to be an UMD space is necessary in
some sense.

But it was an open problem whether every generator of an analytic semigroup on Lq(Ω, µ), 1 < q < ∞
yields the coercive well-posedness in Lp(R;E). Recently, Kalton and Lancien [171] gave a strong negative
answer to this question. If every bounded analytic semigroup on a Banach space E is such that problem
(13.1) is coercively well posed, then E is isomorphic to a Hilbert space.

If A generates a bounded analytic semigroup {exp(zA) : | arg (z)| ≤ δ}, on a Banach space E, then
the following three sets are bounded in the operator norm

(i) {λ(λ−A)−1 : λ ∈ iR, λ �= 0};
(ii) {exp(tA), tA exp(tA) : t > 0};
(iii) {exp(zA) : | arg z| ≤ δ}.

In Hilbert spaces, this already implies the coercive well-posedness in Lp(R+;E), but only in Hilbert spaces
E. The additional assumption that we need in more general Banach spaces E is the R-boundedness.

A set T ⊂ B(E) is said to be R-bounded if there is a constant C < ∞ such that for all Q1, . . . , Qk ∈
T and x1, . . . , xk ∈ E, k ∈ N,∫ 1

0

∥∥∥∥ k∑
j=0

rj(u)Qj(xj)

∥∥∥∥du ≤ C

∫ 1
0

∥∥∥∥ k∑
j=0

rj(u)xj

∥∥∥∥du, (13.13)

where {rj} is a sequence of independent symmetric {−1, 1}- valued random variables, e.g.,the Rademacher
functions rj(t) = sign (sin(2jπt)) on [0, 1]. The smallest C such that (13.13) is fulfilled is called the R-
boundedness constant of T and is denoted by R(T ).
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Theorem 13.4.9 ([293]). Let A generate a bounded analytic semigroup exp(tA) on a UMD-space E.
Then problem (13.1) is coercively well posed in the space Lp(R+;E) iff one of the sets (i), (ii), or (iii)
presented above is R-bounded.

A discrete variant of Theorem 13.4.9 was considered in [83].

Definition 13.4.10. Problem (13.5) is said to be coercively solvable in Lp([0, T ];E), 1 ≤ p ≤ ∞, if for
any f(·) ∈ Lp([0, T ];E), there exists a unique solution u(·) satisfying the equation almost everywhere such
that u(0) = u0, u′(0) = u1, u′′(·), Au(·) ∈ Lp([0, T ];E), and the following coercive inequality holds:

‖u′′(·)‖Lp([0,T ];E) + ‖Au(·)‖Lp([0,T ];E) ≤ M(p)(‖f(·)‖Lp([0,T ];E) + ‖u0‖D(A) + ‖u1‖E1). (13.14)

Theorem 13.4.10 ([232]). Let problem (13.5) be coercively solvable in Lp([0, T ];E) with a certain 1 ≤
p ≤ ∞. Then A is bounded.

Proof. For simplicity, we set u0 = u1 = 0. Then (13.14) implies that the operator (Kf)(t) :=

A
t∫
0

S(t − s,A)f(s) ds, i.e., the operator K from (12.19) with B = I, is a continuous operator act-

ing from Lp([0, T ];E) into Lp([0, T ];E). Theorem 12.7.1 implies K ∈ B(Lp([0, T ];E), C([0, T ];E)).
We now take f ∈ C([0, T ];E). Then we obtain from Corollary 12.8.2 that ‖AS(·, A) ∗ f‖C([0,T ];E) ≤

CT 1/pT 1/q‖f‖C([0,T ];E), where
1

p
+

1

q
= 1, and, therefore, SV (C(·, A), t) ≤ Ct as t → 0. Therefore, by

Proposition 8.1.14, we obtain the boundedness of the operator A.

13.5. Coercivity in B([0, T ];C2θ(Ω))

In [152], the following result was proved.

Theorem 13.5.1. Let Ω be an open bounded subset of Rn lying to one side of its topological boundary
∂Ω, which is a submanifold of Rn of dimension n − 1 and class C2+θ for some θ ∈ (0, 2) \ {1}. Let
A = A(x,Dx) =

∑
|α|≤2

aα(x)Dα
x be a second-order strongly elliptic operator (i.e., Re

∑
|α|=2

aα(x)ξα ≥ ν|ξ|2

for some ν > 0 and for any (x, ξ) ∈ Ω × Rn) with coefficients of class Cθ(Ω). Then there exist µ ≥ 0,

φ0 ∈
(π

2
, π

)
such that for any λ ∈ C with |λ| ≥ µ and |Arg λ| ≤ φ0, the problem{

λu−Au = f,

γ0u = 0,
(13.15)

has a unique solution u(·) belonging to C2+θ(Ω) for any f(·) ∈ Cθ(Ω), and for a certain M > 0,

|λ|1+
θ
2 ‖u‖C(Ω) + |λ| ‖u‖Cθ(Ω) + ‖u‖C2+θ(Ω) ≤ M

(
‖f‖Cθ(Ω) + |λ|

θ
2 ‖γ0f‖C(∂Ω)

)
, (13.16)

where γ0 is the trace operator on ∂Ω.

It is clear from (13.16) that operator A does not generate C0-semigroup on E = Cθ(Ω) space in
general, but, following say [201], we can construct a semigroup exp(tA), t ≥ 0, which is analytic.

Let us consider the following mixed Cauchy–Dirichlet parabolic problem:
∂u

∂t
(t, x) = Au(t, x) + f(t, x), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), t ∈ [0, T ], x′ ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(13.17)
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Definition 13.5.1. We say that problem (13.17) has a strict solution if there is a continuous function
u(t, x) such that it has the first derivative in t and the derivatives of order less than or equal to 2 in

the space variables that are continuous up to the boundary of [0, T ] × Ω, i.e., u(·) ∈ C1
(

[0, T ];C(Ω)
)
∩

C
(

[0, T ];C2(Ω)
)

, and the equations in (13.17) are satisfied.

The space B([0, T ];C2θ(Ω)) is defined as the space of bounded functions u(·) : [0, T ] → C2θ(Ω)
endowed with the usual sup-norm.

Theorem 13.5.2 ([152]). Assume that the following assumptions are satisfied for some θ ∈ (0, 2) \ {1}:
(I) Ω is an open bounded subset of Rn lying to one side of its topological boundary ∂Ω, which is a

submanifold of Rn of dimension n− 1 and class C2+2θ;
(II) operator A = A(x, ∂x) =

∑
|α|≤2

aα(x)∂αx is a second-order strongly elliptic operator (i.e.,

Re
∑
|α|=2

aα(x)ξα ≥ ν|ξ|2 for some ν > 0 and for any (x, ξ) ∈ Ω × Rn) with coefficients of class C2θ(Ω).

Then problem (13.17) has a unique strict solution u(·) belonging to B
(

[0, T ];C2+2θ(Ω)
)

such that

∂u

∂t
∈ B

(
[0, T ];C2θ(Ω)

)
iff the following conditions are satisfied:

(a) u0 ∈ C2+2θ(Ω);

(b) f ∈ C
(

[0, T ];C(Ω)
)
∩B

(
[0, T ];C2θ(Ω)

)
;

(c) g ∈ B
(

[0, T ];C2+2θ(∂Ω)
)
∩ C

(
[0, T ];C2(∂Ω)

)
∩ C1

(
[0, T ];C(∂Ω)

)
,
∂g

∂t
∈ B

(
[0, T ];C2θ(∂Ω)

)
,

∂g

∂t
− γf ∈ Cθ

(
[0, T ];C(∂Ω)

)
;

(d) γu0 = g(0, ·);

(e)
∂g

∂t
(0, ·) − γf(0, ·) = γAu0.

13.6. Boundary-Value Problems

Let us consider the following two-point problem:{
u(m)(t) = Au(t) + f(t), t ∈ [0, T ],

u(j)(0) = u0j , j ∈ α1, u(k)(T ) = u1k, k ∈ α2,
(13.18)

with a continuous function f(·) ∈ C([0, T ];E).
By a solution of problem (13.18), we mean a function u(·) ∈ Cm([0, T ];E) assuming its values in

D(A) and satisfying (13.18) with u0j , u
1
k ∈ D for a certain set D dense in D(A).

Obviously, the definition of well-posedness of its statement is as follows: if fn(t) → 0 uniformly in
t from the closed interval [0, T ] and u0j,n → 0, u1k,n → 0 as j ∈ α1, k ∈ α2, and n → ∞, then un(t) → 0

uniformly in t ∈ [0, T ] .

Theorem 13.6.1 ([135]). Let problem (13.18) be well posed for u0j = 0, u1k = 0 for any j ∈ α1, k ∈ α2.

Then m0 + m1 ≥ m, where m0 = |α0, m1 = |α1|.

Theorem 13.6.2 ([135]). Let problem (13.18) be well posed for f(·) ≡ 0. Then m0 + m1 ≤ m.

Theorem 13.6.3 ([135]). Let problem (13.18) be well posed, and let either

(i) m is even and m0 <
m− 2

2
or m1 <

m− 2

2
,

or

(ii) m is odd and m0 <
m− 1

2
or m1 <

m− 1

2
.
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Then A is bounded.

Theorem 13.6.4 ([105]). Let A ∈ C(M,ω) and −N20 ⊆ ρ(A), and let both limits (5.1) exist for all x ∈ E.
Then there exist a unique solution of the Dirichlet problem

u′′(t) = Au(t), u(0) = x, u(π) = y, 0 ≤ t ≤ π,

and, moreover,
sup
0≤s≤π

‖u(s)‖ ≤ c(‖u(0)‖ + ‖u(π)‖).

Let us consider in the Banach space E the boundary value problem

u′′(t) = Au(t) + f(t), t ∈ (0, T ), u(0) = u0, u(T ) = uT (13.19)

with operator −A which generates C0-semigroup and f(·) be some function from [0, T ] to E. The problem
(13.19) can be considered in different functional spaces.

A function u(t) is called a solution of the eliptic problem (13.19) if the following conditions are
satisfied:

(i) u(t) is a twice continuously differentiable on the interval [0,T]. The derivative at the endpoints of
the segment are understood as the appropriate unilateral derivatives.

(ii) The element u(t) belongs to D(A) for all t ∈ [0, T ] and the function Au(t) is continuous on the
segment [0,T].

(iii) u(t) satisfies the equation and boundary conditions (13.19).
A solution of problem (13.19) defined in this manner will from now on referred to as a solution of

problem (13.19) in the space C([0, T ], E).
The coercive well-posedness in C([0, T ], E) of the boundary value problem (13.19) means that coercive

inequality

‖u′′‖C([0,T ],E) + ‖Au‖C([0,T ],E) ≤ M

(
‖f‖C([0,T ],E) + ‖Au0‖E + ‖AuT ‖E

)
holds for its solution u(·) ∈ C([0, T ], E) with some M which is independent on u0, uT and f(t) ∈
C([0, T ], E).

It turns out that positivity of the operator A in E is necessary condition of coercive well-posedness
of the boundary value problem (13.19) in C([0, T ], E). Is the positivity of the operator A in E a sufficient
condition for the coercive well-posedness of the boundary value problem (13.19)? In general case the
answer is negative.

The coercive well-posedness of the boundary value problem (13.19) were established in

C
β,γ
0T ([0, T ];E),

(0 ≤ γ ≤ β, 0 < β < 1)

the space obtained by completion of the space of all smooth E -valued functions ϕ(t) on [0,T] in the norm

‖ϕ‖
Cβ,γ0T ([0,T ];E)

= max
0≤t≤T

‖ϕ(t)‖E + sup
0≤t<t+τ≤T

(t + τ)γ(T − t)γ‖ϕ(t + τ) − ϕ(t)‖E
τβ

.

Theorem 13.6.5 ([1]). Let A is the positive operator in a Banach space E and f(·) ∈ Cβ,γ
0T ([0, T ];E)

(0 ≤ γ ≤ β, 0 < β < 1). Then for the solution u(t) in Cβ,γ
0T ([0, T ];E) of the boundary value problem

(13.19) the coercive inequality

‖u′′‖
C
β,γ
0T ([0,T ];E)

+ ‖Au‖
C
β,γ
0T ([0,T ];E))

+ ‖u′′‖C([0,T ];Eβ−γ)

≤ M

(
‖f(0) −Au0‖Eβ−γ + ‖f(T ) −AuT ‖Eβ−γ + β−1(1 − β)−1‖f‖

C
β,γ
0T ([0,T ];E)

)
holds, where M is independent on β, γ, u0, uT and f(t).

96



Recall that here the Banach space Eα, 0 < α < 1) consists of those v ∈ E for which the norm

‖v‖Eα = sup
z>0

z1−α‖A
1
2 exp(−zA

1
2 )v‖E + ‖v‖E

is finite.

Theorem 13.6.6 ([1]). Let A is the positive operator in a Banach space E and

f(t) ∈ Cβ,γ
0T ([0, T ];Eα−γ),

(0 ≤ γ ≤ β ≤ α, 0 < α < 1).

Then for the solution u(·) ∈ Cβ,γ
0T ([0, T ];Eα−γ) of the boundary value problem (13.19) the coercive inequal-

ity

‖u′′‖
C
β,γ
0T ([0,T ];Eα−β)

+ ‖Au‖
C
β,γ
0T ([0,T ];Eα−β)

+ ‖u′′‖C([0,T ];Eα−γ)

≤ M

(
‖f(0) −Au0‖Eα−γ + ‖f(T ) −AuT ‖Eα−γ + α−1(1 − α)−1‖f‖

C
β,γ
0T ([0,T ];Eα−β)

)
holds, where M is independent on α, β, γ, u0, uT and f(t).

Theorem 13.6.7 ([70]). Let A be strongly positive operator in a Banach space E and the problem (13.19)
is coercive well-posed in Lp0([0, T ];E) for some 1 < p0 < ∞. Then it is also coercive well-posed in
Lp([0, T ];E) for any 1 < p < ∞ and

‖Au(·)‖Lp([0,T ];E) + max
0≤t≤T

‖u(t)‖E1−1/p ≤
Mp2

p− 1

(
‖ϕn‖Lp([0,T ];E) + ‖u(0)‖E1−1/p + ‖u(T )‖E1−1/p

)
.

Here the space Eα coincides with equivalent norm with the real interpolation space (E,D(A
1
2 ))1−1/p,p.

Consider the problem

u′′(t) = Au(t) + f(t), t ∈ R (13.20)

with bounded solutions and a sectorial operator A on E, i.e., −A ∈ H(0, θ).

Theorem 13.6.8 ([292]). Let A be given on a UMD-space E. Then problem (13.20) is coercively solvable:

‖u′′‖Lp(R;E) + ‖Au(·)‖Lp(R;E) ≤ c‖f‖Lp(R;E) for any f ∈ Lp(R;E),

iff the set {λ(λ−A)−1 : λ < 0} is R-bounded in B(E).

In the space E, let us consider the problem

u′′(t) = Au(t) + f(t), t ∈ [0, T ],

Liu = αi1u(0) + αi2u
′(0) + βi1u(T ) + βi2u

′(T ) = fi, i = 1, 2. (13.21)

with a positive operator A. The boundary-value problem (13.21) is said to be uniformly well-posed in
X ⊂ E and [a, b] ⊂ [0, T ] if for any f1, f2 ∈ E, its solution u(·) ∈ C2([0, T ];E) exists, is unique, and is
stable with respect to fi, i = 1, 2, uniformly in t ∈ [0, T ], i.e.,

sup
t∈[a,b]

‖u(t) − ũ(t)‖ ≤ C
(
‖f1 − f̃1‖ + ‖f2 − f̃2‖

)
.

In [30], [47], necessary and sufficient conditions under which problem (13.21) with a positive operator
A is uniformly well-posed are given. Also, in these papers, the authors present a number theorems on
well-posedness and ill-posedness of elliptic problems and also theorems for problems of the form

u′(t) = Au(t), 0 < t < T, µu(0) + u(T ) = u0.
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Chapter 14

SEMILINEAR PROBLEMS

At present, there is a sufficiently large material (see, e.g., [48,94,96]) devoted to studying nonlinear
problems u′(t) = (Au)(t) and u′(t) ∈ (Au)(t) by using semigroup methods. In this chapter, we consider
only problems with a linear principal operator A and a smooth nonlinear right-hand side f . Namely for
this semilinear problems, the numerical analysis is sufficiently well elaborated, which we present in two
theorems only. For general approximation theorems and the numerical analysis, see the survey [153].

14.1. First-Order Equation

In a Banach space E, let us consider the following Cauchy problem:{
u′(t) = Au(t) + f(t, u(t)), t ∈ [0, T ],

u(0) = u0,
(14.1)

with an operator A generating a C0-semigroup. Here, the function f : [0, T ] × E → E. The existence
and uniqueness of solutions of problem (14.1) is discussed in detail, e.g., in [74]. A classical solution of
problem (14.1) is defined analogously to Definition 13.2.1.

Note that each classical solution of problem (14.1) satisfies the equation

u(t) = (Ku)(t) ≡ exp(tA)u0 +

∫ t

0
exp((t− s)A)f(s, u(s)) ds. (14.2)

Definition 14.1.1. A continuous solution u(·) of Eq. (14.2) is called a mild solution of problem (14.1).

It is clear that in the semilinear case, as in the case of inhomogeneous equations, a mild solution can
be not a classical solution.

Theorem 14.1.1 ([20]). Let A ∈ G(M,ω), u0 ∈ E, a function f : R+ × E → E be continuous in t, and
let it be Lipschitz in the second argument, i.e., for each τ > 0,

‖f(t, x) − f(t, y)‖ ≤ L(τ)‖x− y‖E

for any x, y ∈ E, 0 ≤ t ≤ τ , and a certain constant L(τ). Then problem (14.1) has a unique mild solution
on R+.

If the Lipschitz condition holds locally, then a local existence theorem of mild solutions holds.
Conditions for existence and uniqueness for problems of the form (14.1)–(14.2) were studied in detail,

e.g., in [20,74,75,77,158].

Proposition 14.1.1 ([46]). Let −A be strongly positive, and let A−1 ∈ B0(E). Let f(t, u) be continuous
in totality of the variables, and let ‖f(t, u(t))‖ ≤ c(R) < ∞ for t ∈ [0, t0] and ‖u‖ ≤ R. Then there exists
at least one mild solution of problem (14.1) on [0, t∗] ⊂ [0, t0], t

∗ ≤ t0.

Proposition 14.1.2 ([46]). Let −A be strongly positive. Let f(t, A−αw) be continuous on [0, t0] for any
w ∈ E, and let ‖f(t, A−αw1)− f(t, A−αw2)‖ ≤ c(R)‖w1 −w2‖, ‖w1‖, ‖w2‖ ≤ R. Finally, let u0 ∈ D(Aα).
Then there exists a unique mild, i.e., continuous solution w(·) of the equation

w(t) = exp(tA)Aαu0 +

∫ t

0
Aα exp((t− s)A)f(s,A−αw(s))ds

defined on [0, t∗] ⊂ [0, t0].

N. Pavel [233] gave a necessary and sufficient condition for the existence of a local solution of (14.1)
in case of an analytic semigroup.
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Theorem 14.1.2 ([233]). Let D ⊆ E be a locally closed subset, f(·) : [0, τ) → E be a continuous func-
tional, and let exp(·A) ∈ B0(E). A local classiscal solution u(·) : [0, τ) → D of (14.1) exists if and only if
for all z, u0 ∈ D,

lim
h→0

dist(exp(hA)z + hf(t, z);D) = 0.

Let Ω be an open set in a Banach space E, and let B : Ω → E be a compact operators having no fixed
points on the boundary of Ω. Then for the vector field W(x) = x−Bx, the rotation (degree) γ(I−B; ∂Ω)
being a integer-valued characteristics of this field is well defined. Let z∗ be an isolated fixed point of
the operator B in the ball B(z∗, r0) of radius r0 centered at a point z∗. Then γ(I − B; ∂B(z∗, r0)) =
γ(I −B; ∂B(z∗, r)) for 0 < r < r0.

This common value of the rotation is called the index of the fixed point z∗ and is denoted by
ind(z∗; I − B).

Theorem 14.1.3 ([26]). Let A ∈ H(ω, θ), the resolvent (λI − A)−1 be compact for a certain λ ∈ ρ(A),
and let the operator K be given by formula (14.2). If u∗(·) is a unique mild solution of problem (14.1),
then ind(u∗(·); I −K) = 1.

This theorem is used, e.g., in approximating the Cauchy problem (14.1) with respect to the space,
as well as with respect to time [60].

Definition 14.1.2. A solution of the Cauchy problem (14.1) is said to be Lyapunov stable if for any
ε > 0, there exists δ > 0 such that the inequality ‖u(0)− ũ(0)‖ ≤ δ implies max

0≤t<∞
‖u(t)− ũ(t)‖ ≤ ε, where

ũ(·) is a solution of problem (14.1) with the initial condition ũ(0).

Definition 14.1.3. A solution of the Cauchy problem (14.1) is said to be uniformly asymptotically stable
at a point u(0) if it is Lyapunov stable, and for any mild solution ũ(·) of problem (14.1) with ‖u(0)−ũ(0)‖ ≤
δ, it follows that lim

t→∞
‖u(t)−ũ(t)‖ = 0 uniformly in ũ(0) ∈ B(u(0), δ), i.e., there exists a function Φu(0),δ(·)

such that ‖u(t) − ũ(t)‖ ≤ Φu(0),δ(t) with Φu(0),δ(t) → 0 as t → ∞.

We note that conditions for the existence of uniform asymptotic stability of solution of problem (14.1)
are given, e.g., in [74, Theorem 8.1.8]. These conditions are related to the location of the spectrum of the

operator A +
∂

∂u
f(t, u∗(·)).

In a Banach space E, let us consider the following periodic problem:

v′(t) = Av(t) + f(t, v(t)), v(0) = v(T ), t ∈ R+, (14.3)

with an operator A ∈ H(ω, θ). In the case of periodic solutions, an analog of Eq. (14.2) is the integral
equation

v(t) = (Kv)(t) ≡ exp(tA)(I + exp(TA))−1
∫ T

0
exp((T − s)A)f(s, v(s)) ds

+

∫ t

0
exp((t− s)A)f(s, v(s)) ds, t ∈ [0, T ]. (14.4)

As was noted in [17, Proposition 2.1.36], for the solvability of problem (14.3), it suffices to assume the
existence of an inverse operator (I − exp(tA))−1 for t > t0.Then (I − exp(tA))−1 ∈ B(E) for any t > 0.

Denote by u(·, u0) a solution of problem (14.1) with u(0) = u0. Then the function u(·, u0) satisfies
Eq. (14.2), and we can define the shift operator Ku0 = u(T, u0) along trajectories, which maps E into E.
If u(·, u0) is a T -periodic solution of problem (14.1), then u0 is a zero of the vector field of the operator
K, i.e., (I −K)(u0) = 0.

We call attention to that the operator K maps C([0, T ];E) into C([0, T ];E) and its fixed points, if
they exist, are solutions of Eq. (14.4).
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Theorem 14.1.4 ([95]). Let A ∈ H(ω, θ), the resolvent (λI − A)−1 be compact for a certain λ ∈ ρ(A),
and let a function f be sufficiently smooth, so that there exists a periodic solution v∗(·) of problem (14.3)
such that problem (14.1) has an isolated uniformly asymptotically stable solution at the point u(0) = v∗(0).
Then ind(v∗(0); I −K) = ind(v∗(·); I −K).

Proof. Let S ≡ S(x∗, ρ). Then the rotation γ(I −K; ∂S) of the field I −K on the sphere ∂S is equal to
the index ind(x∗; I −K):

γ(I −K; ∂S) = ind(x∗; I −K). (14.5)

Let

M = sup
x∈S

max
0≤t≤T

‖v(t;x)‖, (14.6)

and consider the domain Ω ⊂ F = C([0, T ];E) defined by

Ω = {u(·) ∈ C([0, T ];E) : u(0) ∈ S, ‖u(·)‖F ≤ M + 1}.

The function v∗(·) is a unique zero of the compact vector field I −K on Ω . Hence

γ(I −K; ∂Ω) = ind(v∗(·); I −K).

In view of (14.5) and (14.6), to prove the contigous theorem, it suffices to show that

γ(I −K; ∂S) = γ(I −K; ∂Ω). (14.7)

For this purpose, on ∂Ω, we consider the following family of compact vector fields:

Φ(v(·);λ) = v(t) − (1 − λ) exp(tA)
(
I − exp(TA)

)−1 T∫
0

exp
(
(T − s)A

)
f
(
s; v(s)

)
ds

− λ exp(tA)K
(
v(0)

)
−

t∫
0

exp
(
(t− s)A

)
f
(
s, v(s)

)
ds (0 ≤ λ ≤ 1). (14.8)

The fields Φ
(
v(·);λ

)
are nondegenerate on ∂Ω. Indeed, if for certain v0(·) ∈ ∂Ω and λ0 ∈ [0, 1], we have

Φ
(
v0(·);λ0

)
= 0, then

v0(0) = (1 − λ0)
(
I − exp(TA)

)−1 T∫
0

exp
(
(T − s)A

)
f
(
s, v0(s)

)
ds + λ0v0(T ). (14.9)

Since the relation (14.9) and the property that Φ
(
v0(·);λ0

)
= 0 imply that the function v0(·) is a mild

solution of (14.1), we obtain

T∫
0

exp
(
(T − s)A

)
f
(
s, v0(s)

)
ds = v0(T ) − exp(TA)v0(0). (14.10)

Without loss of generality, we may set Reσ(A) < 0. But (14.9) and (14.10) imply

exp(TA)
(
(v0(0) − v0(T )

)
= λ−10

(
v0(0) − v0(T )

)
.

If v0(0) − v0(T ) �= 0, then this element is an eigenvector of the operator exp(TA) with the eigenvalue
λ−10 > 1. However, this is impossible, since Re σ(A) < 0, and for analytic C0-semigroups, σ

(
exp(TA)

)
\

{0} = eTσ(A). Hence v0(0) = v0(T ), which implies that v0(·) is a T -periodic solution of problem (14.3)
and that it is a zero of the field I −K. We arrive at a contradiction.
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The fields of families (14.8) are nondegenerate on ∂Ω. Therefore, the fields Φ
(
v(·); 0

)
= I −K and

Φ
(
v(·); 1

)
are homotopic on ∂Ω. We obtain

γ(I −K; ∂Ω) = γ
(

Φ
(
v(·); 1

)
; ∂Ω

)
. (14.11)

On ∂Ω, let us consider the following family of vector fields: (0 ≤ λ ≤ T )

Ψ
(
v(·);λ

)
= v(t) − Pλ

(
exp(tA)K

(
v(0)

)
+

t∫
0

exp
(
(t− s)A

)
f
(
s, v(s)

)
ds

)
, (14.12)

with the operator Pλ : F → F defined by (Pλw)(t) = w(t) for 0 ≤ t ≤ λ and (Pλw)(t) = w(λ) for
λ ≤ t ≤ T.

The operator Q(v(·))(t) = exp(tA)K
(
v(0)

)
+

t∫
0

exp
(
(t− s)A

)
f
(
s, v(s)

)
ds, which maps F onto F , is

compact. The operator Pλ : F → F is strongly continuous in λ. Therefore, the operator PλQ is uniformly
continuous in λ, and family (14.12) is a compact deformation (see [45, Sec. 19.1]).

Let us show that families (14.12) are nondegenerate on ∂Ω. Assume that for certain λ0 ∈ [0, 1] and
v0(·) ∈ ∂Ω, we have v0(·) �= v(·;x∗) and Ψ

(
v0(·);λ0

)
= 0. The boundary ∂Ω of the domain Ω consists of

two parts

G0 = {v(·) ∈ C([0, T ];E) : v(0) ∈ S, ‖v(·)‖C([0,T ];E) = M + 1}

and

G1 = {v(·) ∈ C([0, T ];E) : v(0) ∈ ∂S, ‖v(·)‖C([0,T ];E) ≤ M + 1}.

Let v0(·) ∈ G0. Then

‖v0(·)‖C([0,T ];E) = M + 1. (14.13)

On the other hand, since the function v0(·) is a solution of (14.1) on the closed interval [0, λ] and v0(0) ∈ S,
it follows from (14.6) that

‖v0(·)‖C([0,T ];E) = max
0≤t≤T

‖v0(t)‖E = max
0≤t≤λ

‖v0(t)‖E ≤ M. (14.14)

Equations (14.13) and (14.14) contradict one another. Therefore, there is the only one possibility: v0(·) ∈
G1 and v0(0) ∈ ∂S. But Ψ

(
v0(·);λ0

)
= 0 implies v0(0) = K(v0(0)), which is impossible by the choice of

the radius ρ of the ball S. Therefore, fields (14.12) are nondegenerate on ∂Ω and homotopic. Therefore,

γ
(

Ψ
(
v(·); 0

)
; ∂Ω

)
= γ

(
Ψ
(
v(·);T

)
; ∂Ω

)
. But Ψ

(
v(·);T

)
= Φ

(
v(·); 1

)
, and hence

γ
(

Ψ
(
v(·); 0

)
; ∂Ω

)
= γ

(
Φ
(
v(·); 1

)
; ∂Ω

)
. (14.15)

Consider the vector field

Ψ
(
v(·); 0

)
= v(t) −K

(
v(0)

)
(v(·) ∈ ∂Ω).

Since the operator K
(
v(0)

)
can also be considered as a mapping from F into the space of constant

functions, which is denoted by Ẽ, its rotation (see [45] ) coincides with the rotation of its restriction Ψ̃

to ∂Ω ∩ Ẽ. But the field Ψ̃
(
v(·); 0

)
on ∂Ω ∩ Ẽ is isomorphic to the field I −K on ∂S. Therefore,

γ
(

Ψ
(
v(·); 0

)
; ∂Ω

)
= γ

(
Ψ̃
(
v(·); 0

)
; ∂Ω ∩ Ẽ

)
= γ(I −K; ∂S). (14.16)

From (14.11), (14.15), and (14.16), we obtain (14.7). The theorem is proved.

To show how one can use, e.g., Theorem 14.1.4 in practice, let us define the following conditions.
(A) Consistency. There exists λ ∈ ρ(A) ∩ ∩n ρ(An) such that the resolvents converge:

R(λ;An) → R(λ;A).
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(B) Stability. There are some constants M1 ≥ 1 and ω such that

‖R(λ;An)‖ ≤ M/|λ− ω| for Reλ > ω.

To formulate the convergence theorem, we need the following notation. By a semidiscrete approxi-
mation of the T -periodic problem (14.3), we mean the T -periodic problems

v′n(t) = Anvn(t) + fn
(
t, vn(t)

)
, vn(t) = vn(t + T ), t ∈ R+, (14.17)

where the operators An generate analytic semigroups in En, condition (A) is satisfied, the functions fn
are uniformly bounded sup

t∈[0,T ],‖xn‖≤c1

‖fn(t, xn)‖ ≤ C2, the functions fn approximate f and are smooth

enough with fn(t, xn) = fn(t + T, xn) for any xn ∈ En and t ∈ R+.
The mild solutions of (14.17) are determined by the equations

vn(t) = (Knvn)(t) ≡ exp(tAn)
(
In − exp(TAn)

)−1 ∫ T

0
exp

(
(T − s)An

)
fn

(
s, vn(s)

)
ds

+

∫ t

0
exp

(
(t− s)An

)
fn

(
s, vn(s)

)
ds. (14.18)

Theorem 14.1.5 ([95]). Assume that Conditions (A) and (B) hold and the compact resolvents R(λ;A),
R(λ;An) converge:

R(λ;An) → R(λ;A)

compactly for some λ ∈ ρ(A). Assume that
(i) the functions f and fn are sufficiently smooth, so that there exists an isolated mild solution v∗(·)

of the periodic problem (14.3) with v∗(0) = x∗ such that the Cauchy problem

u′(t) = Au(t) + f
(
t, u(t)

)
, u(0) = x∗, (14.19)

has an uniformly asymptotically stable isolated solution at the point x∗;
(ii) fn(t, xn) → f(t, x) uniformly in t ∈ [0, T ] as xn → x;
(iii) the space E is separable.
Then for almost all n, problems (14.17) have periodic mild solutions v∗n(t), t ∈ [0, T ], in a neighborhood

of pnv
∗(·), where v∗(·) is a mild periodic solution of (14.3) with v∗(0) = x∗. Each sequence {v∗n(·)} is P-

compact, and v∗n(t) → v∗(t) uniformly with respect to t ∈ [0, T ].

Proof. We divide the proof into several steps.
Step 1. First, let us show that the compact convergence of resolvents R(λ;An) → R(λ;A) is equivalent

to the compact convergence of C0-semigroups exp(tAn) → exp(tA) for any t > 0. Let ‖xn‖ = O(1).

Then from the estimate ‖An exp(tAn)‖ ≤
M

t
eωt, we obtain the boundedness of the sequence {(An −

λ) exp(tAn)xn}. Because of the compact convergence of resolvents, we obtain the compactness of the
sequence {exp(tAn)xn}.

The necessity will be proved if for the measure of noncompactness µ(·) (for the definition, see [278]),
we establish that µ

(
{(λI −An)−1xn}

)
= 0 for ‖xn‖ = O(1). We have

µ
(
{(λI −An)−1xn}

)
= µ

(
{

∫ ∞
0

e−λt exp(tAn)xn}
)
≤ µ

(
{

∫ q

0
e−λt exp(tAn)xndt}

)
+µ

(
{

∫ ∞
Q

e−λt exp(tAn)xndt}
)

+ µ
(
{exp(εAn)

∫ Q

q

e−λt exp
(
(t− ε)An

)
xndt}

)
.

Two first terms can be made less than ε by the choice of q,Q. The last term is equal to zero because of
the compact convergence exp(εAn) → exp(εA) for any 0 < ε < q.

Step 2. Consider the operators K and Kn defined by (14.4) and (14.18) on the spaces

F = C([0, T ];E) ≡ {u(t) : ‖u‖F = max
t∈[0,T ]

‖u(t)‖E < ∞}
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and

Fn = C([0, T ];En) ≡ {un(t) : ‖un‖Fn = max
t∈[0,T ]

‖un(t)‖En < ∞}.

The operator K defined by (14.4) is compact in F. Indeed, we obtain that the operator

Fε(uk)(t) = exp(εA)

∫ t−ε

0
exp

(
(t− s− ε)A

)
f
(
s, uk(s)

)
ds

maps any bounded set of functions {uk(·)}, ‖uk(·)‖F ≤ C, into a compact set in E for any t > 0 and
0 < ε < t. We see that ‖Fε(uk)(t) −F(uk)(t)‖ ≤ Cε for any t ∈ (0, T ], where

F(uk)(t) =

∫ t

0
exp

(
(t− s)A

)
f
(
s, uk(s)

)
ds

and 0 < ε < t. Then it follows that the operator F(·)(t) : F → E is compact for the same t > 0. For t = 0,
the operator F(·)(0) is also compact. Moreover, the set of functions {Fk(·)}, Fk(t) = F(uk)(t), t ∈ [0, T ],
is an equibounded and equicontinuous family, since for 0 < t1 < t2, we obtain

‖Fk(t2) − Fk(t1)‖ ≤ C
(∫ t1

0
‖ exp

(
(t2 − s)A

)
− exp

(
(t1 − s)A

)
‖ds + |t2 − t1|

)
,

and exp(·A) is uniformly continuous in t > 0.

The sequence {yk}, yk =
(
I − exp(TA)

)−1 T∫
0

exp
(
(T − s)A

)
f
(
s, uk(s)

)
ds ∈ E, is compact, since

{F(uk)(T )} is a compact set. Therefore, {exp(·A)yk} is a compact sequence of functions in F. By the
generalized Arzela–Ascoli theorem, it follows that operator K is compact.

Step 3. It is easy to see that Kn → K. Indeed In → I stably and exp(TAn) → exp(TA) compactly;
hence In − exp(TAn) → I − exp(TA) regularly, the nullspace N

(
I − exp(TA)

)
= {0} and the operators

In − exp(TAn) are Fredholm of index zero. Then it follows from [14] that In − exp(TAn) → I − exp(TA)

stably, i.e.,
(
In− exp(TAn)

)−1
→

(
I − exp(TA)

)−1
and the convergence Kn → K is a consequence of the

dominated convergence theorem. To show that Kn → K compactly, we assume that ‖un‖Fn = O(1). Now
{Knun} is P-compact by the generalized Arzela–Ascoli theorem. To show this, we verify the vanishing of
the noncompactness measure µ({(Knun)(t)}) = 0 for all t ∈ [0, T ]. Let us consider the relation

(Knvn)(t) = exp(tAn)yn + ψτ
n(t) + ϕτ

n(t),

where

yn =
(
In − exp(TAn)

)−1 ∫ T

0
exp

(
(T − s)An

)
fn

(
s, vn(s)

)
ds,

ψτ
n(t) = exp(τAn)

∫ t−τ

0
exp

(
(t− s− τ)An

)
fn

(
s, vn(s)

)
ds,

ϕτ
n(t) =

∫ t

t−τ
exp

(
(t− s)An

)
fn

(
s, vn(s)

)
ds.

By virtue of the boundedness of ‖fn
(
·, vn(·)

)
‖Fn, we can choose the term ‖ϕτ

n(·)‖Fn sufficiently small with
τ small enough and µ({ψτ

n}) = 0. The sequence {yn} is P-compact.
Step 4. The condition of existence of an isolated uniformly asymptotically stable solution u(t;x∗) of

the problem (14.19) implies that in a small neighborhood of x∗, say in S(x∗, ρ) ⊂ E, the operator K is
compact, since the set F(uk)(T ) is compact for any {uk}, uk(t) ∈ S(x∗, ε), t ∈ [0, T ], with ‖uk(0)−x∗‖ ≤ δ.
The point x∗ is an isolated zero of the compact vector field I − K and ind(x∗; I −K) is defined. In the
same way function v∗(t) = u(t;x∗), t ∈ [0, T ], that is the solution of problem (14.4), is an isolated zero of
the field I −K and ind(v∗(·); I −K) is defined.

From Theorem 14.1.4, it follows that the relation ind(x∗; I −K) = ind(v∗(·); I −K) holds.
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Step 5. The condition of uniform assymptotic stability of the solution u∗(·) of the problem (14.1)
at the point x∗ implies that there is an integer m such that the operator Km maps the ball S(x∗, δ) into
itself; more precisely, ‖Km(x∗) − Km(x)‖ ≤ φx∗,δ(mT ) < δ for any x ∈ S(x∗, δ). Therefore, this means
that ind(x∗; I −Km) = 1, and by Theorem 31.1 [45], we obtain ind(x∗; I −K) = 1. Using Step 4, we have
ind(v∗(·); I −K) = 1. Now, Kn → K compactly, ind(v∗(·); I−K) = 1, and applying the result from [278],
we obtain that the set of solutions of problems (14.18) is nonempty, any sequence of solutions {v∗n(·)} is
P-compact, and, moreover, v∗n(t) → v∗(t) uniformly in t ∈ [0, T ] as n → ∞. The theorem is proved.

14.2. Second-Order Equation

In a Banach space E, let us consider the following semilinear Cauchy problem

u′′(t) = Au(t) + f(t, u(t), u′(t)), u(0) = u0, u′(0) = u1, t ∈ R, (14.20)

with the operator A being a generator of a C0-cosine operator function and a continuous function f :
R×D → E, where D ⊆ E1 ×E is a locally closed subset of E1 ×E.

Definition 14.2.1. A classical solution of (14.20) on the closed interval [0, T ] is a function u(·) : R→ E
such that u(·) is twice continuously differentiable and satisfies (14.20) for all t ∈ [0, T ].

As is known a classical solution u(t) of problem (14.20) also satisfies the following integral equation
(see [274]):

u(t) = (Ku)(t) ≡ C(t, A)u0 + S(t, A)u1 +

∫ t

0
S(t− s,A)f(s, u(s), u′(s))ds (14.21)

and is a mild solution. Recal that a solution u(·) ∈ C1([0, T ];E) of Eq. (14.21) is called a mild solution
of (14.20).

A mild solution of (14.20) is a classical solution if f(·, u(·)) is absolutely continuous. Therefore, in
general for a continuous function f , a mild solution is not classical.

Existence and uniqueness problems for problem (14.20) were studied, e.g., in [158,274]. In [158], the
case where E is a Banach lattice was also considered.

Assume that f : J ×E ×E → E satisfies the following conditions:
(C1) f(·, x, y) is strongly measurable for all x, y ∈ E, and f(t, 0, 0) ∈ L1(J,E).
(C2) for all x, y, h, k ∈ E and for a.a. t ∈ J ,

‖g(t, x + h, y + k) − g(t, x, y)‖ ≤ q(t, ‖h‖, ‖k‖),

where f : J × R2+ → R+ is a Carathéodory function, q(t, ·, ·) is nondecreasing for a.a. t ∈ J , the problem

u′′(t) = M f(t, u(t), u′(t)), u(0) = u0, u
′(0) = u1, (14.22)

with some constant M has an upper solution on J for each (u0, u1) ∈ R2+, and the zero-function is the
only solution of (14.22) when u0 = u1 = 0.

Theorem 14.2.1 ([158]). If the Conditions (C1)–(C2) hold, then for each (u0, u1) ∈ E2 × E, problem

(14.20) has a unique weak solution u(·) on J. Moreover, u(·) is of the form u(t) = u0 +
∫ t
0 y(s) ds, t ∈ J,

where y(·) is the uniform limit of the sequence {yn}∞n=0 of the successive approximations

yn+1(t) = S(t)Au0 + C(t)u1 +

∫ t

0
C(t− s,A)f(s, u0 +

s

∫
0
yn(τ))dτ, yn(s)) ds,

t ∈ J, n ∈ N, and with an arbitrarily chosen yo ∈ C(J,E).
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Consider the existence of mild solutions of the problem

u′′(t) = Au(t) + f(t, u(t)), u(0) = u0, u′(0) = u1, (14.23)

that lies between assumed upper and lower mild solutions, when E is an ordered Banach space with
regular order cone and f : J ×E → E.

Given u0, u1 ∈ E ×E, we say that u(·) ∈ C(J,E) is a lower mild solution of the problem (14.23) on
J if

u(t) < C(t, A)u0 + S(t, A)u1 +

∫ t

0
S(t− s,A)f(s, u(s)) ds (14.24)

for each t ∈ J . An upper mild solution of (14.23) is defined similarly, by reversing the inequality sign in
(14.24). If equality holds in (14.24), we say that u(·) is a mild solution of (14.23).

Let us introduce the following hypotheses on the mappings f : J ×E → E and C : J → B(E).
(C3) (14.23) has a lower mild solution u(·) and an upper mild solution ū(·) such that u(·) ≤ ū(·),

and the functions f(·, u(·)) and f(·, ū(·)) are Bochner integrable.
(C4) f(·, u(·)) is strongly measurable whenever u(·) ∈ C(J,E).
(C5) f(t, ·) is nondecreasing for a.a. t ∈ J .
(C6) C(t, A) ≥ 0 for all t ∈ J .
If (C6) holds, it follows from (2.8) that S(t, A) ≥ 0 for each t ∈ J .

Theorem 14.2.2 ([158]). If the conditions (C3)–(C6) hold, then problem (14.23) has extremal mild so-
lutions lying between u(·) and ū(·).

Theorem 14.2.3 ([95]). Assume that Conditions (A) and (B) hold and the compact resolvents
R(λ;A), R(λ;An) converge:

R(λ;An) → R(λ;A)

compactly for some λ ∈ ρ(A) and u0n → u0, u1n → u1. Assume that
(i) the functions fn, f are continuous in both arguments and f is such that there exists a unique mild

solution u∗(t) of problem (14.23) on [0, T ] (in this situation, as we will show, ind u∗ = 1);
(ii) fn(t, xn) → f(t, x) uniformly in t ∈ [0, T ] for xn → x;
(iii) the space E is separable.
Then for almost all n, the problems

u′′n(t) = Anun(t) + fn(t, un(t)),

un(0) = u0n, u
′
n(0) = u1n,

(14.25)

have mild solutions u∗n(t), t ∈ [0, T ] in a neighborhood of pnu
∗(t). Each sequence {u∗n(t)} is P-compact

and u∗n(t) → u∗(t) uniformly in t ∈ [0, T ].

Proof. First, let us prove that the compact convergence of resolvents, R(λ;An) → R(λ;A), is equivalent
to the compact convergence of sine operator functions Sn(t, An) → S(t, A) for any t ≥ 0. Let ‖xn‖ = O(1).
We are going to show that from the compact convergence of resolvents, R(λ;An) → R(λ;A), it follows
µ({Sn(t, An)xn}) = 0 for any t, where µ is the measure of noncompactness of sequences. From the
identities

λ2(λ2I −An)−1Sn(t, An) − Sn(t, An) = λ

∫ ∞
0

e−ληCn(ηAn)Sn(t, An)dη − Sn(t, An)

=
1

2
λ

∫ ∞
0

e−λη
(
Sn(t + η,An) + Sn(t− η,An) − 2Sn(t, An)

)
dη
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we obtain the estimate

‖λ2(λ2I −An)−1Sn(t, An) − Sn(t, An)‖

≤
1

2

∫ δ

0
e−λη‖Sn(t + η,An) − 2Sn(t, An) + Sn(t− η,An)‖dηλ +

1

2
λ

∫ ∞
δ

e−ληMeωηdη,

where the first term in the right-hand side is less than ε for small δ and the second one is less than ε for
λ large enough (we recall that if resolvents converge compactly for some λ, then they converge compactly
for any λ with Reλ large enough). Estimating the measure of noncompactness by

µ({Sn(t, An)xn}) ≤ µ({λ2(λ2In −An)−1Sn(t, An)xn}) + ‖λ2(λ2In −An)−1Sn(t, An) − Sn(t, An)‖

we obtain the compact convergence of C0-sine operator functions. The necessity will be proved if we
establish that µ({(λIn − An)−1xn}) = 0 for ‖xn‖ = O(1) under the condition that Sn(t, An) → S(t, A)
compactly. We have

µ({(λ2In −An)−1xn}) = µ

({∫ ∞
0

e−λtSn(t, An)xn

})
≤ µ

({∫ q

0
e−λtSn(t, An)xndt

})
+ µ

({∫ ∞
Q

e−λtSn(t, An)xndt

})
+ µ

({∫ Q

q

e−λtSn(t, An)xndt

})
.

If q is small enough and Q is large enough, then the first and second terms become less than ε. The third
term is equal to zero by the uniform continuity of Sn(·, An) on [q,Q].

Now we are going to prove that the compact convergence of C0-sine operator functions and condition
(ii) imply that Kn → K compactly. It is clear that Kn → K. Let {un} be a sequence of functions
un ∈ C(0, T ;En) such that ‖un‖C(0,T ;En) = O(1) as n → ∞. To prove that {Knun} is compact, we apply
the theorem from [46]. The sequence of functions {Knun},Knun ∈ C(0, T ;En), is uniformly bounded,
equicontinuous, and for any t ∈ [0, T ], the operator Kn maps the bounded set of functions {un} into
a precompact set. Therefore, Kn → K compactly. Now, from [278], it follows that γ(I − K; ∂Sr) =
γ(In−Kn; ∂Sn,r) as n ≥ n0. If we establish that γ(I−K; ∂Sr) �= 0, then by Theorem 3 in [278], it follows
that solutions of (14.25) do exist in a neighborhood of pnu

∗(t), each sequence {u∗n(t)} is P-compact, and
u∗n(t) → u∗(t) uniformly with respect to t ∈ [0, T ]; this will prove the theorem.

Therefore, let us show that γ(I−K; ∂Sr) = 1. It follows from the assumption of the theorem that the
operator K has no fixed points on the boundary ∂Sr, where Sr = {u : ‖u− u∗‖ < r}. We want to show

that for the operator (Ku)(t) = C(t)u0+S(t, A)u1+
t∫
0

S(t− s,A)f(s, u(s))ds, with a continuous function

f , the index of the fixed point u∗ is equal to γ(I −K; ∂Sr) = 1. To do this, we define the operator

Gλu = K(Pλu) + u∗ −K(Pλu
∗),

where K(u∗) = u∗ and the operator Pλ is defined by the formulas

(Pλu)(t) = u(t− λ) for λ < t ≤ T,

(Pλu)(t) = u(0)) for t ∈ [0, λ].

We complete the proof if the following two assertions will be proved:

γ(I −Gλ; ∂Sr) = γ(Φ1; ∂Sr) = 1,

where Φ1(u) = u− u∗, and

γ(I −Gλ; ∂Sr) = γ(I −G0; ∂Sr) = γ(I −K; ∂Sr)

for λ sufficiently small. The fields Φ1(u) = u−u∗ and Φ2(u) = u−Gλu are connected by a linear compact
nondegenerate deformation (see [45, Sec. 19.1]):

H(µ, λ)u = u− µGλu− (1 − µ)u∗, 0 ≤ µ ≤ 1,
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i.e., Φ1 and Φ2 are linearly homotopic. The operator H has no singular points on ∂Sr. To prove this, we
assume the contrary: there exist v∗ �= u∗ and H(µ, λ)v∗ = 0. Then by the formula

v∗ = µK(Pλv
∗) − µK(Pλu

∗) + u∗,

we first obtain v∗(0) = u∗(0), and, therefore, because of the relation (Pλv
∗)(t) = (Pλu

∗)(t) for 0 ≤ t ≤ λ,
we have

v∗(t) = u∗(t) for t ∈ [0, λ]. (14.26)

Repeating the same argument, we obtain

v∗(t) = u∗(t) for t ∈ [0, 2λ],

since (Pλv
∗)(t) = (Pλu

∗)(t) for 0 ≤ t ≤ 2λ by virtue of (14.26). In this way, we can arrive at 3λ and so
on; this means that u∗ = v∗. Since the operator H has no singular points on ∂Sr, H is a linear compact
deformation. Clearly,

γ(I −H(0, λ); ∂Sr) = γ(Φ1; ∂Sr) = 1,

and, therefore, by [45, Theorem 20.1],

1 = γ(I −H(1, λ); ∂Sr) = γ(I −Gλ; ∂Sr).

The operator Gλ is compact for any λ (see [284]), and, moreover, {∪λ∈[0,T ]Gλu : u ∈ Sr} is precompact
(if this set is not relatively compact, then there exist two sequences {λk} and {uk} such that {Gλkuk}
is not compact, which contradicts the compactness of K). Clearly, Pλ → Pλ0 strongly in C([0, T ];E) as
λ → λ0. Let vk → v0, and let λk → λ0. Since

Gλkvk −Gλ0v0 = K(Pλkvk) + u∗ −K(Pλku
∗) −K(Pλ0v0) − u∗ + K(Pλ0u

∗)

= K(Pλkvk) −K(Pλ0v0) + K(Pλ0u
∗) −K(Pλku

∗) → 0 as λk → λ0,

we have that the operator Gλ is continuous in both arguments, and, as we have seen, the set {y : y =
Gλu, ‖u − u∗‖ ≤ r, 0 ≤ λ ≤ T} is relatively compact. Since Gλ → G0 compactly as λ → 0, by [278], the
operators Gλ have no fixed points on ∂Sr for λ small, and for the same λ, we obtain

γ(I −Gλ; ∂Sr) = γ(I −G0; ∂Sr) = γ(I −K; ∂Sr).

The theorem is proved.
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80. W. Arendt, O. El-Mennaoui, and V. Kéyantuo, “Local integrated semigroups: evolution with jumps
of regularity,” J. Math. Anal. Appl., 186, No. 2, 572–595 (1994).

81. W. Arendt and J. Pruss, “Vector valued Tauberian theorems and asymptotic behaviour of linear
Volterra equations,” SIAM Appl. Math., 23, 412–448 (1992).

82. A. Ashyralyev, P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations, Birkhäuser
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